|本期目录/Table of Contents|

[1]王喜英,赵辉,卢志宏,等.汞胁迫对蔬菜土壤细菌和真菌群落结构及丰度的影响[J].江苏农业科学,2023,51(14):229-239.
 Wang Xiying,et al.Influences of Hg stress on structure and abundance of soil bacterial and fungal communities in soils for growing vegetables[J].Jiangsu Agricultural Sciences,2023,51(14):229-239.
点击复制

汞胁迫对蔬菜土壤细菌和真菌群落结构及丰度的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第14期
页码:
229-239
栏目:
资源与环境
出版日期:
2023-07-20

文章信息/Info

Title:
Influences of Hg stress on structure and abundance of soil bacterial and fungal communities in soils for growing vegetables
作者:
王喜英赵辉卢志宏谭智勇宋希娟
铜仁学院,贵州铜仁 554300
Author(s):
Wang Xiyinget al
关键词:
蔬菜土壤hgcA基因细菌真菌高通量测序
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
汞(Hg)是一种广泛存在于土壤环境中的全球污染物之一,土壤微生物对汞胁迫的敏感性强于动植物,可从微生物角度为蔬菜土壤汞污染生态风险评估提供科学依据。采用盆栽试验,应用荧光定量PCR和高通量测序(Illumina HiSeq)技术,分析对照(CK)、低浓度汞(T1)、中浓度汞(T2)和高浓度汞(T3)胁迫处理下蔬菜土壤hgcA基因数量、细菌数量、真菌数量和群落结构变化特征。结果表明,T1处理增加细菌和hgcA基因数量,分别比CK、T2和T3提高了37.48%和 12.01%、57.31%和 19.37%、88.85%和14.82%。汞胁迫降低了真菌数量,其中T2处理降低最显著。T3处理降低了土壤细菌群落α多样性指数(丰富度和多样性),T1处理降低了土壤真菌群落α多样性指数(丰富度和多样性)。土壤细菌门水平上,共获得18个类群,其中放线菌门、变形菌门和绿弯菌门为优势类群,且在不同处理间差异极显著。T2和T3处理分别显著增加了变形菌门和放线菌门相对丰度。绿弯菌门相对丰度均表现随汞浓度增加逐渐递减的趋势。土壤真菌门水平上,共获得9个类群,其中子囊菌门、被孢菌门和担子菌门为优势类群,其相对丰度共占真菌群落的94.64%。随着汞浓度增加,子囊菌门相对丰度递增,被孢菌门相对丰度递减。担子菌门在 T1 处理中最高(5.40%)。土壤pH值、铵态氮含量、硝态氮含量和全汞含量与土壤细菌数量、细菌和真菌群落结构有显著关系。综上,汞胁迫对蔬菜土壤hgcA基因、细菌和真菌数量有显著影响,高汞胁迫造成了土壤细菌多样性减少,细菌和真菌群落结构和组成发生变化,而细菌群落对汞胁迫的敏感性强于真菌。
Abstract:
-

参考文献/References:

[1]Natasha,Shahid M,Khalid S,et al. A critical review of mercury speciation,bioavailability,toxicity and detoxification in soil-plant environment:ecotoxicology and health risk assessment[J]. Science of the Total Environment,2020,711:134749.
[2]Clarkson T W. The toxicology of mercury[J]. Critical Reviews in Clinical Laboratory Sciences,1997,34(4):369-403.
[3]Liu X,Ma A Z,Zhuang G Q,et al. Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China[J]. MicrobiologyOpen,2018,7(4):e00577.
[4]Shuaib M,Azam N,Bahadur S,et al. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism[J]. Microbial Pathogenesis,2021,150:104713.
[5]Ji H B,Zhang Y,Bararunyeretse P,et al. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain[J]. Ecotoxicology and Environmental Safety,2018,165:182-193.
[6]李昌鑫. 燃煤电厂周边环境中汞的溯源研究及其对微生物多样性的影响[D]. 杭州:浙江大学,2020:24-30.
[7]刘振京. 土壤汞对植物生长和微生物群落的生物学效应研究[D]. 北京:北京化工大学,2019:27-40.
[8]Száková J,Havlícˇková J,Sˇípková A,et al. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil[J]. Journal of Environmental Science and Health(Part A),2016,51(4):364-370.
[9]Salam L B,Shomope H,Ummi Z,et al. Mercury contamination imposes structural shift on the microbial community of an agricultural soil[J]. Bulletin of the National Research Centre,2019,43(1):163.
[10] Yao X F,Zhang J M,Tian L,et al. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay,China[J]. Brazilian Journal of Microbiology,2017,48(1):71-78.
[11]Wang L,Wang L,Zhan X Y,et al. Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils[J]. Ecotoxicology and Environmental Safety,2020,188:109906.
[12]Harris-Hellal J,Vallaeys T,Garnier-Zarli E,et al. Effects of mercury on soil microbial communities in tropical soils of French Guyana[J]. Applied Soil Ecology,2009,41(1):59-68.
[13]Xie X M,Liao M,Ma A L,et al. Effects of contamination of single and combined cadmium and mercury on the soil microbial community structural diversity and functional diversity[J]. Chinese Journal of Geochemistry,2011,30(3):366-374.
[14]Frossard A,Hartmann M,Frey B. Tolerance of the forest soil microbiome to increasing mercury concentrations[J]. Soil Biology and Biochemistry,2017,105:162-176.
[15]Liu Y R,Wang J J,Zheng Y M,et al. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils[J]. Microbial Ecology,2014,68(3):575-583.
[16]Rajapaksha R M C P,Tobor-Kapon M A,Bth E. Metal toxicity affects fungal and bacterial activities in soil differently[J]. Applied and Environmental Microbiology,2004,70(5):2966-2973.
[17]崔晓峰,李淑仪,丁效东,等. 珠江三角洲地区典型菜地土壤与蔬菜重金属分布特征研究[J]. 生态环境学报,2012,21(1):130-135.
[18]Wang B H,Chu C B,Wei H W,et al. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals[J]. Environmental Pollution,2020,267:115411.
[19]Zheng L G,Li Y,Shang W Q,et al. The inhibitory effect of cadmium and/or mercury on soil enzyme activity,basal respiration,and microbial community structure in coal mine-affected agricultural soil[J]. Annals of Microbiology,2019,69(8):849-859.
[20]周心劝. 稻田土壤中微生物群落对甲基汞积累的影响[D]. 重庆:西南大学,2019:31-39.
[21]Liu Y R,Yu R Q,Zheng Y M,et al. Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient[J]. Applied and Environmental Microbiology,2014,80(9):2874-2879.
[22]Abdelmageed Y,Miller C,Sanders C,et al. Assessing microbial communities related to mercury transformations in contaminated streambank soils[J]. Water,Air,& Soil Pollution,2021,232(1):31.
[23]李仲根,冯新斌,何天容,等. 王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J]. 矿物岩石地球化学通报,2005,24(2):140-143.
[24]鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社,2000:25-114.
[25]Chen B S,Du K Q,Sun C,et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives[J]. The ISME Journal,2018,12(9):2252-2262.
[26]Christensen G A,Wymore A M,King A J,et al. Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment[J]. Applied and Environmental Microbiology,2016,82(19):6068-6078.
[27]Bowles T M,Acosta-Martínez V,Calderón F,et al. Soil enzyme activities,microbial communities,and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape[J]. Soil Biology and Biochemistry,2014,68:252-262.
[28]许跃奇. 重金属Hg在烟草中的吸收积累规律及生物炭消减效应研究[D]. 郑州:河南农业大学,2015:19-27.
[29]高雪峰,韩国栋. 短花针茅根系分泌物对荒漠草原土壤细菌群落及土壤养分的影响[J]. 中国草地学报,2021,43(6):76-84.
[30]Liu Y R,Delgado-Baquerizo M,Bi L,et al. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China[J]. Microbiome,2018,6(1):183.
[31]Deng L J,Zeng G M,Fan C Z,et al. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil[J]. Applied Microbiology and Biotechnology,2015,99(19):8259-8269.
[32]Liu Y R,Johs A,Bi L,et al. Unraveling microbial communities associated with methylmercury production in paddy soils[J]. Environmental Science & Technology,2018,52(22):13110-13118.
[33]Vishnivetskaya T A,Hu H Y,Van Nostrand J D,et al. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou,China[J]. Environmental Science(Processes & Impacts),2018,20(4):673-685.
[34]Crognale S,DAnnibale A,Pesciaroli L,et al. Fungal community structure and As-resistant fungi in a decommissioned gold mine site[J]. Frontiers in Microbiology,2017,8:2202.
[35]Vig K,Megharaj M,Sethunathan N,et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review[J]. Advances in Environmental Research,2003,8(1):121-135.
[36]Rieder S R,Frey B. Methyl-mercury affects microbial activity and biomass,bacterial community structure but rarely the fungal community structure[J]. Soil Biology and Biochemistry,2013,64:164-173.
[37]Frossard A,Donhauser J,Mestrot A,et al. Long-and short-term effects of mercury pollution on the soil microbiome[J]. Soil Biology and Biochemistry,2018,120:191-199.
[38]Connell J H. Intermediate-disturbance hypothesis[J]. Science,1979,204(4399):1345.
[39]Delgado-Baquerizo M,Reith F,Dennis P G,et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere[J]. Ecology,2018,99(3):583-596.
[40]Durand A,Maillard F,Foulon J,et al. Environmental metabarcoding reveals contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanagement site[J]. Microbial Ecology,2017,74(4):795-809.
[41]Durand A,Maillard F,Foulon J,et al. Interactions between Hg and soil microbes:microbial diversity and mechanisms,with an emphasis on fungal processes[J]. Applied Microbiology and Biotechnology,2020,104(23):9855-9876.
[42]Meharg A A. The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations[J]. Mycological Research,2003,107(11):1253-1265.
[43]雷雷佳,刘俊,刘卫国,等. 工业园周边土壤重金属污染特征及潜在生态风险评价[J]. 江苏农业科学,2021,49(16):227-233.
[44]Franois F,Lombard C,Guigner J M,et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury[J]. Applied and Environmental Microbiology,2012,78(4):1097-1106.
[45]Wang Q F,Jiang X,Guan D W,et al. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols[J]. Applied Soil Ecology,2018,125:88-96.
[46]Luo L Y,Xie L L,Jin D C,et al. Bacterial community response to cadmium contamination of agricultural paddy soil[J]. Applied Soil Ecology,2019,139:100-106.
[47]Haferburg G,Kothe E. Microbes and metals:interactions in the environment[J]. Journal of Basic Microbiology,2007,47(6):453-467.
[48]Barkay T,Miller S M,Summers A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews,2003,27(2/3):355-384.
[49]商丽荣,万里强,李向林. 有机肥对羊草草原土壤细菌群落多样性的影响[J]. 中国农业科学,2020,53(13):2614-2624.
[50]Mller A K,Barkay T,Hansen M A,et al. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow,freshwater and sea-ice brine[J]. FEMS Microbiology Ecology,2014,87(1):52-63.
[51]Harichová J,Karelová E,Pangallo D,et al. Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample[J]. Biologia,2012,67(6):1038-1048.
[52]Podosokorskaya O A,Kadnikov V V,Gavrilov S N,et al. Characterization of Melioribacter roseus gen.nov.,sp.nov.,a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria,and a proposal of a novel bacterial phylumIgnavibacteriae[J]. Environmental Microbiology,2013,15(6):1759-1771.
[53]Sutcliffe I C. Cell envelope architecture in the Chloroflexi:a shifting frontline in a phylogenetic turf war[J]. Environmental Microbiology,2011,13(2):279-282.
[54]op de Beeck M,Ruytinx J,Smits M M,et al. Belowground fungal communities in pioneer Scots pine stands growing on heavy metal polluted and non-polluted soils[J]. Soil Biology and Biochemistry,2015,86:58-66.
[55]Zhang H L,Zheng X Q,Bai N L,et al. Responses of soil bacterial and fungal communities to organic and conventional farming systems in East China[J]. Journal of Microbiology and Biotechnology,2019,29(3):441-453.
[56]Beimforde C,Feldberg K,Nylinder S,et al. Estimating the Phanerozoic history of the Ascomycota lineages:combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution,2014,78:386-398.
[57]Zhao S C,Qiu S J,Xu X P,et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils[J]. Applied Soil Ecology,2019,138:123-133.
[58]Baldrian P,in der Wiesche C,Gabriel J,et al. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil[J]. Applied and Environmental Microbiology,2000,66(6):2471-2478.
[59]Wang N N,Zhang S H,He M C. Bacterial community profile of contaminated soils in a typical antimony mining site[J]. Environmental Science and Pollution Research,2018,25(1):141-152.
[60]Wen F,Hou H,Yao N,et al. Effects of simulated acid rain,EDTA,or their combination,on migration and chemical fraction distribution of extraneous metals in Ferrosol[J]. Chemosphere,2013,90(2):349-357.
[61]Deng S Q,Ke T,Li L T,et al. Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant:Elsholtzia haichowensis Sun[J]. Environmental Pollution,2018,237:1088-1097.

相似文献/References:

[1]马培,张继伟.茶树菇废弃物对汞吸附特性的研究[J].江苏农业科学,2017,45(09):253.
 Ma Pei,et al.Adsorption characteristics to mercury by Agrocybe aegerita waste[J].Jiangsu Agricultural Sciences,2017,45(14):253.
[2]赵伟,丁弈君,孙泰朋,等.生物质炭对汞污染土壤吸附钝化的影响[J].江苏农业科学,2017,45(11):192.
 Zhao Wei,et al.Effects of biomass carbon on adsorption and passivation of mercury contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(14):192.
[3]张玉涛,李琪琪,张晓娟,等.汞离子与土壤富里酸的络合反应及影响因素[J].江苏农业科学,2017,45(21):272.
 Zhang Yutao,et al.Complex reaction of mercury ion and soil fulvic acid and its influencing factors[J].Jiangsu Agricultural Sciences,2017,45(14):272.
[4]陈红卫,张重路,王一山,等.生物质炭对重金属污染土壤中汞的赋存形态及运移分配的影响[J].江苏农业科学,2018,46(08):312.
 Chen Hongwei,et al.Effects of biochar on speciation and distribution of mercury in soils contaminated by heavy metals[J].Jiangsu Agricultural Sciences,2018,46(14):312.
[5]曹萌,南冠君,高玉琼,等.重金属对豌豆幼苗抗性生理指标的影响[J].江苏农业科学,2019,47(07):161.
 Cao Meng,et al.Effects of heavy metal stress on resistance physiological indices of Pisum sativum L.[J].Jiangsu Agricultural Sciences,2019,47(14):161.
[6]施玉玉,张煜林,胡素萍,等.鸡粪生物炭对蔬菜土壤中沙门氏菌迁移和滞留存活的影响[J].江苏农业科学,2021,49(5):232.
 Shi Yuyu,et al.Effects of chicken manure biochar on migration and retention of Salmonella in vegetable soils[J].Jiangsu Agricultural Sciences,2021,49(14):232.

备注/Memo

备注/Memo:
收稿日期:2022-07-20
基金项目:贵州省教育厅自然科学项目(编号:黔教合KY字[2020]163);铜仁学院博士科研启动基金(编号:tyxyDH2002、tyxyDH1603);绿色农药与农业生物工程教育部重点实验室开放基金(编号:黔教合KY字[2019]036);铜仁学院硕士点及学科建设研究子项目(编号:trxyxwdxm-027);贵州省科技项目(编号:黔科合SY字[2014]3035)。
作者简介:王喜英(1981—),女,河南汝南人,硕士,讲师,主要从事生物化学及生物信息学分析。E-mail:810315971@qq.com。
通信作者:赵辉,博士,教授,主要从事土壤微生态及作物栽培研究。E-mail:yancao504@163.com。
更新日期/Last Update: 2023-07-20