|本期目录/Table of Contents|

[1]潘语卓,邱泽龙,王伟虎,等.黑麦草和苕子混合翻压还田对土壤酶活性和养分的短期影响[J].江苏农业科学,2023,51(16):230-239.
 Pan Yuzhuo,et al.Short-term effect of ryegrass and hairy vetch mixture returning to field on soil enzyme activity and nutrient[J].Jiangsu Agricultural Sciences,2023,51(16):230-239.
点击复制

黑麦草和苕子混合翻压还田对土壤酶活性和养分的短期影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第16期
页码:
230-239
栏目:
资源与环境
出版日期:
2023-08-20

文章信息/Info

Title:
Short-term effect of ryegrass and hairy vetch mixture returning to field on soil enzyme activity and nutrient
作者:
潘语卓12 邱泽龙2 王伟虎12 康健龙2 万潮政2 石蕊2陆艺引2 肖世豪12 鲁美娟3 杨文亭12
1.江西农业大学作物生理生态与遗传育种教育部重点实验室,江西南昌 330045; 2.江西农业大学农学院,江西南昌 330045;3.江西农业大学国土资源与环境学院,江西南昌 330045
Author(s):
Pan Yuzhuoet al
关键词:
覆盖作物土壤β-葡萄糖苷酶土壤脲酶土壤养分
Keywords:
-
分类号:
S154.2;S158
DOI:
-
文献标志码:
A
摘要:
种植覆盖作物是优化种植结构、实现化肥减量增效的有效途径之一。深入了解覆盖作物翻压腐解对土壤养分、酶活性的影响,有助于优化作物种植的氮素管理。采用室内培养模拟试验,研究覆盖作物种类[空闲(CK)、黑麦草单播(R)、苕子单播(H)、黑麦草/苕子混播(RH)]和种植模式[种植甜玉米(C)和不种植甜玉米]对覆盖作物翻压腐解前期(0~21 d)土壤养分、土壤酶活性动态变化的影响。结果表明:(1)与对照相比,覆盖作物翻压还田处理显著提高了土壤β-葡萄糖苷酶活性、碱解氮含量和速效钾含量。土壤β-葡萄糖苷酶活性、碱解氮含量在不同覆盖作物处理之间存在显著差异,苕子翻压处理的β-葡萄糖苷酶活性、碱解氮含量在覆盖作物翻压4~14 d时均优于混播、黑麦草处理,且混播处理的碱解氮含量显著高于黑麦草处理。(2)在种植甜玉米的条件下,苕子处理的碱解氮含量在覆盖作物翻压21 d时较覆盖作物翻压4、7 d时均有显著下降,黑麦草/苕子混播处理的碱解氮含量在腐解前期无显著差异。(3)与不种甜玉米相比,种植甜玉米的处理显著降低了苕子和混播处理在覆盖作物翻压7 d时的土壤β-葡萄糖苷酶活性和β-葡萄糖苷酶-脲酶活性比,但显著提高了混播处理在覆盖作物翻压21 d时的土壤 β-葡萄糖苷酶活性和β-葡萄糖苷酶-脲酶活性比。(4)苕子翻压后,土壤脲酶活性与土壤有机质含量、pH值及碱解氮含量存在显著相关性,混播翻压后土壤酶活性与有效磷含量、速效钾含量的相关性显著增加。综上所述,覆盖作物翻压能够在短期内提高土壤速效养分含量和β-葡萄糖苷酶活性,苕子翻压后的土壤碱解氮含量显著高于黑麦草,黑麦草和苕子混合翻压腐解能够保持合理的碱解氮浓度,并延长其有效性时间。
Abstract:
-

参考文献/References:

[1]孙明雪,张玉霞,丛百明,等. 苜蓿抗寒性对秋季施用钾肥种类及用量的生理响应[J]. 干旱地区农业研究,2022,40(1):247-254.
[2]李青梅,王华玲,张玲玲,等. 白三叶草和鼠茅草对果园土壤微生物和线虫群落的影响差异[J]. 植物营养与肥料学报,2021,27(6):1055-1067.
[3]王晓维,徐健程,龙昌智,等. 施氮量和土壤含水量对黑麦草还田红壤氮素矿化的影响[J]. 植物营养与肥料学报,2018,24(2):365-374.
[4]曹卫东,包兴国,徐昌旭,等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报,2017,23(6):1450-1461.
[5]Hunter M C,Kemanian A R,Mortensen D A. Cover crop effects on maize drought stress and yield[J]. Agriculture,Ecosystems & Environment,2021,311:107294.
[6]Langelier M,Chantigny M H,Pageau D,et al. Nitrogen-15 labelling and tracing techniques reveal cover crops transfer more fertilizer N to the soil reserve than to the subsequent crop[J]. Agriculture,Ecosystems & Environment,2021,313:107359.
[7]Adetunji A T,Ncube B,Mulidzi R,et al. Management impact and benefit of cover crops on soil quality:a review[J]. Soil and Tillage Research,2020,204:104717.
[8]Wen Y,Zang H D,Ma Q X,et al. Impact of water table levels and winter cover crops on greenhouse gas emissions from cultivated peat soils[J]. The Science of the Total Environment,2020,719:135130.
[9]Griffiths M,Delory B M,Jawahir V,et al. Optimisation of root traits to provide enhanced ecosystem services in agricultural systems:a focus on cover crops[J]. Plant,Cell & Environment,2022,45(3):751-770.
[10]蹇述莲,李书鑫,刘胜群,等. 覆盖作物及其作用的研究进展[J]. 作物学报,2022,48(1):1-14.
[11]Glasener K M,Wagger M G,MacKown C T,et al. Contributions of shoot and root nitrogen-15 labeled legume nitrogen sources to a sequence of three cereal crops[J]. Soil Science Society of America Journal,2002,66(2):523-530.
[12]Luo L,Meng H,Gu J. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management,2017,197:539-549.
[13]Bowles T M,Acosta-Martínez V,Calderón F,et al. Soil enzyme activities,microbial communities,and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape[J]. Soil Biology and Biochemistry,2014,68:252-262.
[14]Yang K,Zhu J J,Yan Q L,et al. Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of Northeast China[J]. Annals of Forest Science,2012,69(7):795-803.
[15]Dilly O,Blume H P,Munch J C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany[J]. Biogeochemistry,2003,65(3):319-339.
[16]Adetunji A T,Lewu F B,Mulidzi A R,et al. The biological activities of β-glucosidase,phosphatase and urease as soil quality indicators:a review[J]. Journal of Soil Science and Plant Nutrition,2017,17(3):794-807.
[17]鲍士旦. 土壤农化分析方法[M]. 北京:中国农业出版社,2000:25-108.
[18]关松荫. 土壤酶及其研究法[M]. 北京:北京农业出版社,1986:30-125.
[19]Nevins C J,Lacey C,Armstrong S D. The synchrony of cover crop decomposition,enzyme activity,and nitrogen availability in a corn agroecosystem in the Midwest United States[J]. Soil and Tillage Research,2020,197:104518.
[20]Hobbie J E,Hobbie E A. Microbes in nature are limited by carbon and energy:the starving-survival lifestyle in soil and consequences for estimating microbial rates[J]. Frontiers in Microbiology,2013,11(4):324-334.
[21]王理德,王方琳,郭春秀,等. 土壤酶学硏究进展[J]. 土壤,2016,48(1):12-21.
[22]de Notaris C,Mortensen E ,Srensen P,et al. Cover crop mixtures including legumes can self-regulate to optimize N2 fixation while reducing nitrate leaching[J]. Agriculture,Ecosystems & Environment,2021,309:107287.
[23]徐欣,王晓军,谢洪宝,等. 秸秆腐解对不同氮肥水平土壤脲酶活性的影响[J]. 中国农学通报,2018,34(34):99-102.
[24]蔡银美,张成富,赵庆霞,等. 模拟根系分泌物输入对森林土壤氮转化的影响研究综述[J]. 浙江农林大学学报,2021,38(5):916-925.
[25]薄晶晶,王俊,付鑫. 两种绿肥腐解及其碳氮养分释放动态特征[J]. 生态科学,2019,38(6):37-45.
[26]Nevins C J,Lacey C,Armstrong S. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems[J]. European Journal of Agronomy,2021,126:126277.
[27]Laidler B P H K. The molecular kinetics of the urea-urease system.Ⅱ. The inhibition by products[J]. Journal of the American Chemical Society,1950,72(6):2487-2489
[28]高菊生,黄晶,杨志长,等. 绿肥和稻草联合还田提高土壤有机质含量并稳定氮素供应[J]. 植物营养与肥料学报,2020,26(3):472-480.
[29]高嵩涓,周国朋,曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报,2020,26(12):2115-2126.
[30]徐健程,王晓维,朱晓芳,等. 不同绿肥种植模式下玉米秸秆腐解特征研究[J]. 植物营养与肥料学报,2016,22(1):48-58.
[31]赵冬雪,王盼盼,常春丽,等. 绿肥套作对植烟土壤微生物群落功能多样性的影响[J]. 华北农学报,2019,34(5):201-207.
[32]顾炽明,李越,李银水,等. 绿肥腐解液中有机酸组成对铝磷和铁磷活化能力的影响[J]. 植物营养与肥料学报,2021,27(9):1627-1635.
[33]刘诗璇,陈松岭,蒋一飞,等. 控释氮肥与普通氮肥配施对东北春玉米氮素利用及土壤养分有效性的影响[J]. 生态环境学报,2019,28(5):939-947.
[34]郑慧芬,吴红慧,翁伯琦,等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料,2019(2):68-74.
[35]秦嘉海,张勇,赵芸晨,等. 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律[J]. 冰川冻土,2014,36(2):335-346.
[36]Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008,11(11):1252-1264.
[37]单明娟,秦华,陈俊辉,等. 两种间作体系对丛枝菌根真菌侵染及多氯联苯去除的影响[J]. 应用与环境生物学报,2018,24(3):470-477.
[38]和文祥,谭向平,王旭东,等. 土壤总体酶活性指标的初步研究[J]. 土壤学报,2010,47(6):1232-1236.
[39]黄书涛. 黄河三角洲盐碱地土壤脲酶活性与土壤性质的通径分析[J]. 山东农业科学,2007(6):89-91.

相似文献/References:

[1]昭日格图,张玉旭.蓖麻栽培地不同覆盖作物和耕作方式对土壤物理性质的影响[J].江苏农业科学,2017,45(21):82.
 Zhaorigetu,et al.Effects of cover crops and tillage method on soil physical characters in castor cultivation field[J].Jiangsu Agricultural Sciences,2017,45(16):82.

备注/Memo

备注/Memo:
收稿日期:2022-11-23
基金项目:江西省研究生创新专项(编号:YC2021-S367);大学生创新创业训练计划(编号:202210410223);国家自然科学基金(编号:31901125)。
作者简介:潘语卓(1997—),女,四川乐山人,硕士研究生,主要研究方向为覆盖作物培肥农田地力机理。E-mail:962863261@qq.com。
通信作者:杨文亭,博士,副研究员,主要研究方向为覆盖作物提高作物产量和培肥地力的机理机制研究。E-mail:wtyang@jxau.edu.cn。
更新日期/Last Update: 2023-08-20