|本期目录/Table of Contents|

[1]黄梅艳,颉永红,赵红,等.OsOFP6基因过表达与RNA干扰水稻转录组分析[J].江苏农业科学,2023,51(22):24-33.
 Huang Meiyan,et al.Transcriptome analysis of rice with OsOFP6 gene overexpression and RNA interference[J].Jiangsu Agricultural Sciences,2023,51(22):24-33.
点击复制

OsOFP6基因过表达与RNA干扰水稻转录组分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第22期
页码:
24-33
栏目:
生物技术
出版日期:
2023-12-04

文章信息/Info

Title:
Transcriptome analysis of rice with OsOFP6 gene overexpression and RNA interference
作者:
黄梅艳颉永红赵红刘炳环樊铸硼滕开冲李建雄
广西大学农学院,广西南宁 530000
Author(s):
Huang Meiyanet al
关键词:
水稻OsOFP6基因核糖体代谢RNA-seq差异表达基因
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
为探究卵形家族蛋白6(OFP6)基因过表达(OE)与RNA干扰(RNAi)对水稻基因转录表达的影响,并解析OsOFP6基因调控水稻生长发育与抗逆通路,对OsOFP6基因的OsOFP6-OE、OsOFP6-RNAi株系进行转录组测序技术(RNA-seq)测序。测序共获得446 277 340份原始数据,每个样品比对率均在90.84%以上,OsOFP6-OE与OsOFP6-RNAi共检测到22 116个基因,以Fold Change≥2且FDR<0.05作为筛选标准,ZH11 vs OsOFP6-OE中获得229个差异表达基因(DEGs),其中包含上调基因161个、下调基因68个;ZH11 vs OsOFP6-RNAi中获得1 466个差异表达基因,其中包含上调基因464个、下调基因1 002个。OsOFP6-OE的KEGG通路富集分析结果显示,差异基因在氨基酸糖和核苷酸糖代谢相关通路中较多。OsOFP6-RNAi的KEGG通路富集分析结果显示,差异基因显著富集于核糖体相关通路。过表达OsOFP6后,显示有8个DEGs富集到核氨基酸糖和核苷酸糖代谢通路中,可能参与核苷酸与蛋白质的水解。OsOFP6-RNAi后,其中有28个DEGs被富集到核糖体中,可能参与mRNA的翻译、翻译共折叠、添加不依赖翻译的氨基酸。利用RNA-Seq技术分析了OsOFP6基因过表达与RNA干扰对中花11的影响,发现其通过调控多个OsOFP6下游基因表达,来影响其代谢相关信号通路,为后续分析OsOFP6基因的功能以及解析OFP家族基因的表达调控提供了材料。
Abstract:
-

参考文献/References:

[1]Liu J P,van Eck J,Cong B,et al. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit[J]. Proceedings of the National Academy of Sciences,2002,99(20):13302-13306.
[2]Wang S,Chang Y,Guo J J,et al. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation:AtOFP1 suppresses cell elongation[J]. The Plant Journal,2007,50(5):858-872.
[3]Wang S C,Chang Y,Guo J J,et al. Arabidopsis ovate family proteins,a novel transcriptional repressor family,control multiple aspects of plant growth and development[J]. PLoS One,2011,6(8):e23896.
[4]Hackbusch J,Richter K,Muller J,et al. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins[J]. Proceedings of the National Academy of Sciences,2005,102(13):4908-4912.
[5]Li E Y,Wang S C,Liu Y Y,et al. Ovate Family Protein 4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana[J]. The Plant Journal,2011,67(2):328-341.
[6]Ito Y,Katsura K,Maruyama K,et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant and Cell Physiology,2006,47(1):141-153.
[7]Yang J,Ji L,Liu S,et al. The CaM1-associated CCaMK-MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice[J]. Journal of Experimental Botany,2021,72(18):6611-6627.
[8]Yu H,Jiang W Z,Liu Q,et al. Expression pattern and subcellular localization of the ovate protein family in rice[J]. PLoS One,2015,10(3):e0118966.
[9]Yang C,Shen W,He Y,et al. Ovate Family Protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice[J]. PLoS Genetics,2016,12(6):e1006970.
[10]Snouffer A,Kraus C,Knaap E V D. The shape of things to come:ovate family proteins regulate plant organ shape[J]. Current Opinion in Plant Biology,2019,53:98-105.
[11]Xiao Y,Zhang G,Liu D,et al. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice[J]. The Plant Journal,2020,102(6):1187-1201.
[12]Shucai W,Ying C,Brian E. Overview of ovate family proteins,a novel class of plant-specific growth regulators[J]. Frontiers in Plant Science,2016,7:417.
[13]马雅美. 水稻OsOFP6基因的功能研究.[D]. 北京:中国科学院大学,2018:15-34.
[14]Liu J H,Zhang J,Wang J Y,et al. MuMADS1 and MaOFP1 regulate fruit quality in a tomato ovate mutant[J]. Plant Biotechnology Journal,2018,16(5):989-1001.
[15]Pagnussat G C,Yu H J,Sundaresan V. Cell-Fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1[J]. The Plant Cell,2007,19(11):3578-3592.
[16]Schmitz A J,Begcy K,Sarath G,et al. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development[J]. Plant Science,2015,241:177-188.
[17]Ma Y M,Yang C,He Y,et al. Rice OVATE family protein 6 regulates plant development and confers resistance to drought and cold stresses[J]. Journal of Experimental Botany,2017,68(17):4885-4898.
[18]郭江帆. OsbHLH98通过抑制OsBUL1的转录调控水稻叶夹角[D]. 杭州:浙江大学,2021:17-22.
[19]Ning J,Zhang B,Wang N L,et al. Increased leaf angle1,a Raf-Like MAPKKK that interacts with a nuclear protein family,regulates mechanical tissue formation in the lamina joint of rice[J]. The Plant Cell,2011,23(12):4334-4347.
[20]Sun X X,Ma Y M,Yang C,et al. Rice OVATE family protein 6 regulates leaf angle by modulating secondary cell wall biosynthesis[J]. Plant Molecular Biology,2020,104(3):249-261.
[21]Xiao Y H,Liu D P,Zhang G X,et al. Brassinosteroids regulate OFP1,a DLT interacting protein,to modulate plant architecture and grain morphology in rice[J]. Frontiers in Plant Science,2017,8:1698.
[22]Yang C,Ma Y M,He Y,et al. OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling[J]. The Plant Journal,2018,93(3):489-501.
[23]Meng F,Xiang D,Zhu J S,et al. Molecular mechanisms of root development in rice[J]. Rice,2019,12(1):1.
[24]Saini S,Sharma I,Kaur N,et al. Auxin:a master regulator in plant root development[J]. Plant Cell Reports,2013,32(6):741-757.
[25]陈开,唐瑭,张冬平,等. 生长素和细胞分裂素参与构建水稻根系的研究进展[J]. 植物生理学报,2020,56(12):2495-2509.
[26]Zhao H M,Ma T F,Wang X,et al. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.)[J]. Plant,Cell & Environment,2015,38(11):2208-2222.
[27]Swarup R,Bhosale R. Developmental roles of AUX1/LAX auxin influx carriers in plants[J]. Frontiers in Plant Science,2019,10:1306.
[28]Sauter M,Chen L. Polar auxin transport determines adventitious root emergence and growth in rice[J]. Frontiers in Plant Science,2019,10:444
[29]白云赫,朱旭东,樊秀彩,等. 植物DELLA蛋白及其应答赤霉素信号调控植物生长发育的研究进展[J]. 分子植物育种,2019,17(8):2509-2516.
[30]宋松泉,刘军,黄荟,等. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制[J]. 中国科学(生命科学),2020,50(6):599-615.
[31]Wu Y,Wang Y,Mi X F,et al. The QTL GNP1 encodes GA20ox1,which increases grain number and yield by increasing cytokinin activity in rice panicle meristems[J]. PLoS Genetics,2016,12(10):e1006386.
[32]Uga Y,Sugimoto K,Ogawa S,et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics,2013,45(9):1097-1102.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(22):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(22):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(22):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(22):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(22):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(22):90.

备注/Memo

备注/Memo:
收稿日期:2022-12-20
基金项目:国家自然科学基金(编号:31970523)。
作者简介:黄梅艳(1998—),女,湖北恩施人,硕士,主要从事植物分子生物学研究。E-mail:2017301016@st.gxu.edu.cn。
通信作者:李建雄,博士,教授,主要从事植物分子生物学研究。E-mail:jxli920@gxu.edu.cn。
更新日期/Last Update: 2023-11-20