|本期目录/Table of Contents|

[1]王沙沙,黄绍敏,宋晓,等.小麦氮利用效率相关基因TaARE1的生物信息学分析及等位变异[J].江苏农业科学,2023,51(22):34-40.
 Wang Shasha,et al.Bioinformatics analysis and allelic variation of TaARE1 gene related to nitrogen use efficiency in wheat[J].Jiangsu Agricultural Sciences,2023,51(22):34-40.
点击复制

小麦氮利用效率相关基因TaARE1的生物信息学分析及等位变异(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第22期
页码:
34-40
栏目:
生物技术
出版日期:
2023-12-04

文章信息/Info

Title:
Bioinformatics analysis and allelic variation of TaARE1 gene related to nitrogen use efficiency in wheat
作者:
王沙沙1黄绍敏2宋晓2张珂珂2李杰3刘新浩4李艳5
1.河南省农业科学院小麦研究所/河南省小麦生物学重点实验室,河南郑州 450002;2.河南省农业科学院植物营养与资源环境研究所,河南郑州 450002; 3.信阳农林学院农学院,河南信阳 464000;4.信阳农林学院中心实验室,河南信阳464000; 5.焦作大学,河南焦作 454000
Author(s):
Wang Shashaet al
关键词:
小麦氮素利用效率TaARE1基因生物信息学等位变异
Keywords:
-
分类号:
S512.101
DOI:
-
文献标志码:
A
摘要:
为进一步解析小麦氮素利用效率基因TaARE1的生物学功能,以14个小麦品种为试验材料,通过同源克隆、生物信息学分析以及PCR扩增、测序等方法分析该基因的序列特征、基因启动子区域的顺式作用元件以及该基因在13个小麦品种中的多态性情况。结果表明,本研究从普通小麦中克隆了3个同源基因TaARE1-A、TaARE1-BTaARE1-D。这3个基因均包含7个外显子和6个内含子,CDS 全长均为1 266 bp,编码421个氨基酸;TaARE1蛋白分子量为48.8 ku,理论等电点pI为5.02;它具跨膜结构,无信号肽,为亲水性蛋白;其蛋白二级结构由4种形式构成,包括α-螺旋(52.73%)、延伸链(17.10%)、β转角(4.28%)、无规则卷曲(25.89%)。TaARE1的启动子区富含3-AF1 binding site、LAMP-element、GATA-motif等8种与光响应有关的顺式作用元件。通过对小麦TaARE1基因的多态性筛选,分别在其启动子上游-261、-421、-819、-887、-969、-1 530 bp位置发现了6个SNP,这些位点可能与小麦产量相关联。本研究可为揭示与TaARE1功能有关的调控机制提供有用的信息,并为进一步开发与氮素利用效率有关的功能标记以及分子标记辅助育种奠定基础。
Abstract:
-

参考文献/References:

[1]Asseng S,Guarin J R,Raman M,et al. Wheat yield potential in controlled-environment vertical farms[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(32):19131-19135.
[2]唐继伟,孙文彦,田昌玉,等. 不同氮肥类型和用量对小麦产量和加工品质的影响[J]. 植物营养与肥料学报,2021,27(4):728-740.
[3]冯悦晨,于志勇,周怀平,等. 氮肥调控与地膜覆盖对晋南旱地小麦产量及氮肥利用效率的影响[J]. 中国土壤与肥料,2021(3):63-69.
[4]邓丽娟,焦小强. 氮管理对冬小麦产量和品质影响的整合分析[J]. 中国农业科学,2021,54(11):2355-2365.
[5]吴金芝,黄明,李友军,等. 耕作方式和氮肥用量对旱地小麦产量、水分利用效率和种植效益的影响[J]. 水土保持学报,2021,35(5):264-271.
[6]刘学彤,黄少辉,邢素丽,等. 有机肥氮替代部分化肥氮对冬小麦产量及氮素利用的影响[J]. 江苏农业科学,2022,50(11):71-75.
[7]Chiu C C,Lin C S,Hsia A P,et al. Mutation of a nitrate transporter,AtNRT1:4,results in a reduced petiole nitrate content and altered leaf development[J]. Plant and Cell Physiology,2004,45(9):1139-1148.
[8]Zheng Y E,Drechsler N,Rausch C,et al. The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation[J]. Plant Signaling & Behavior,2016,11(5):e1176819.
[9]Almagro A,Lin S H,Tsay Y F.Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J]. The Plant Cell,2008,20(12):3289-3299.
[10]Liu W W,Sun Q,Wang K,et al. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis[J]. The New Phytologist,2017,214(2):734-744.
[11]Fan S C,Lin C S,Hsu P K,et al. The Arabidopsis nitrate transporter NRT1.7,expressed in phloem,is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell,2009,21(9):2750-2761.
[12]Li J Y,Fu Y L,Pike S M,et al. Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell,2010,22(5):1633-1646.
[13]Wang Y Y,Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. The Plant Cell,2011,23(5):1945-1957.
[14]Hsu P K,Tsay Y F. Two phloem nitrate transporters,NRT1.11 and NRT1.12,are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology,2013,163(2):844-856.
[15]Hu B,Wang W,Ou S J,et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics,2015,47(7):834-838.
[16]Fan X R,Feng H M,Tan Y W,et al. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen[J]. Journal of Integrative Plant Biology,2016,58(6):590-599.
[17]Wang W,Hu B,Yuan D Y,et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell,2018,30(3):638-651.
[18]王沙沙,黄绍敏,张珂珂,等. 小麦硝酸盐转运蛋白基因TaNRT1.1的鉴定及其等位变异分析[J]. 麦类作物学报,2023,43(3):261-269.
[19]Wang Q,Nian J Q,Xie X Z,et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications,2018,9:735.
[20]Wang Q,Su Q M,Nian J Q,et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant,2021,14(6/7):1012-1023.
[21]Karunarathne S D,Han Y,Zhang X Q,et al. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley[J]. Journal of Integrative Plant Biology,2022,64(3):756-770.
[22]Guo M,Wang Q,Zong Y,et al. Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat[J]. Journal of Genetics and Genomics,2021,48(10):950-953.
[23]Su Z Q,Hao C Y,Wang L F,et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2011,122(1):211-223.
[24]王沙沙,裴星旭,黄超,等. 小麦TaGS2基因等位变异与粒重之间的关系分析[J]. 植物遗传资源学报,2022,23(5):1438-1445,1555.
[25]Mcintosh R A,Devos K M,Dubcovsky J,et al. Catalogue of gene symbols for wheat:2007 supplement[EB/OL].[2023-04-20]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5362c808f7564a71ddbf58611ae71bc5df1559e4.
[26]Zhang J H,Zhang H T,Li S Y,et al. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9[J]. Journal of Integrative Plant Biology,2021,63(9):1649-1663.
[27]孙瑞琴,门光耀. 环境因素对植物硝态氮代谢的影响[J]. 阴山学刊(自然科学版),2007,21(1):65-67.

相似文献/References:

[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及 高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
 Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(22):83.
[5]刘亚柏.有机水稻—红花草轮作对有机稻产量及土壤肥力的影响[J].江苏农业科学,2014,42(12):72.
 Liu Yabo,et al.Effects of organic rice-clover rotation on yield and soil fertility of organic rice[J].Jiangsu Agricultural Sciences,2014,42(22):72.
[6]杜菲,郑慧,李宏军.以还原糖含量为指标的膨化小麦辅料麦汁糖化工艺优化[J].江苏农业科学,2014,42(11):306.
 Du Fei,et al(0).Optimization of saccharification process of puffed wheat wort taking reducing sugar content as indicator[J].Jiangsu Agricultural Sciences,2014,42(22):306.
[7]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
 Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(22):159.
[8]郑光耀,高丽萍,尹有干,等.冷杉针叶三萜酸在小麦生产上的应用[J].江苏农业科学,2014,42(11):98.
 Zheng Guangyao,et al(98).Application of triterpene acids from fir needles in wheat production[J].Jiangsu Agricultural Sciences,2014,42(22):98.
[9]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
 Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(22):71.
[10]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
 Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(22):74.

备注/Memo

备注/Memo:
收稿日期:2023-04-28
基金项目:河南省科技研发计划联合基金(编号:222103810015);国家重点研发计划(编号:2022YFD2300802、2021YFD1700900);河南省自然科学基金(202300410023);河南省科技攻关计划(编号:222102110449)。
作者简介:王沙沙(1981—),女,河南焦作人,博士,助理研究员,从事小麦分子育种研究。E-mail:shasha0391@126.com。
通信作者:宋晓,博士,副研究员,从事小麦栽培和土壤养分演变研究。E-mail:songxiao401@126.com。
更新日期/Last Update: 2023-11-20