|本期目录/Table of Contents|

[1]陈建珍,穆麒麟.印度梨形孢提高作物抵抗非生物胁迫的研究进展[J].江苏农业科学,2023,51(24):11-20.
 Chen Jianzhen,et al.Research progress on Piriformospora indica in enhancing crop resistance to abiotic stress[J].Jiangsu Agricultural Sciences,2023,51(24):11-20.
点击复制

印度梨形孢提高作物抵抗非生物胁迫的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第24期
页码:
11-20
栏目:
专论与综述
出版日期:
2023-12-20

文章信息/Info

Title:
Research progress on Piriformospora indica in enhancing crop resistance to abiotic stress
作者:
陈建珍穆麒麟
长江大学农学院/长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434000
Author(s):
Chen Jianzhenet al
关键词:
印度梨形孢干旱胁迫盐胁迫内生真菌互惠共生
Keywords:
-
分类号:
S311;S182
DOI:
-
文献标志码:
A
摘要:
干旱胁迫和高盐胁迫是农业生产上面临的两大主要非生物胁迫,严重危害作物的生长生产,导致作物的产量和质量显著降低。因此,提高作物抵抗逆境胁迫的能力已成为当下亟待解决的问题。利用有益菌与作物建立互惠共生关系,提高作物的抗逆性,已成为帮助作物应对环境变化、增产增质的一种经济有效且绿色环保的措施。印度梨形孢是一种可以体外培养的根内生真菌,寄主范围广泛,能与多种作物互作共生。本文系统总结了干旱和盐胁迫条件下,印度梨形孢定殖促进作物的营养生长和生殖生长,提高作物的抗氧化能力、维持光合系统的稳定性和细胞溶质的离子稳态,激活胁迫相关的基因和蛋白质,增强作物的抗逆性,缓解胁迫危害等的研究。该研究可为农业的可持续发展和印度梨形孢潜在价值的深层次开发提供参考。
Abstract:
-

参考文献/References:

[1]Unnikumar K R,Sree K S,Varma A. Piriformospora indica:a versatile root endophytic symbiont[J]. Symbiosis,2013,60(3):107-113.
[2]Gill S S,Gill R,Trivedi D K,et al. Piriformospora indica:potential and significance in plant stress tolerance[J]. Frontiers in Microbiology,2016,7:332.
[3]Abdelaziz M E,Abdeldaym E A,Sabra M A. The root endophytic fungus Piriformospora indica improves growth performance,physiological parameters and yield of tomato under water stress condition[J]. Middle East Journal of Agriculture Research,2018,7(3):1090-1101.
[4]Zuccaro A,Lahrmann U,Güldener U,et al. Endophytic life strategies decoded by genome and transcriptone analyses of the mutualistic root symbiont Piritormospora indica[J]. PLoS Pathogens,2011,7(10):e1002290.
[5]Varma A,Bakshi M,Lou B G,et al. Piriformospora indica:a novel plant growth-promoting mycorrhizal fungus[J]. Agricultural Research,2012,1(2):117-131.
[6]Ghabooli M,Khatabi B,Ahmadi F S,et al. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley[J]. Journal of Proteomics,2013,94:289-301.
[7]Hussin S,Khalifa W,Geissler N,et al. Influence of the root endophyte Piriformospora indica on the plant water relations,gas exchange and growth of Chenopodium quinoa at limited water availability[J]. Journal of Agronomy and Crop Science,2017,203(5):373-384.
[8]Gohari A,Eslamian S,Abedi-Koupaei J,et al. Climate change impacts on crop production in Irans Zayandeh-Rud River Basin[J]. Science of the Total Environment,2013,442:405-419.
[9]Takahashi S,Badger M R .Photoprotection in plants:a new light on photosystem Ⅱ damage[J]. Trends in Plant Science,2011,16(1):53-60.
[10]Saddique M A B,Ali Z,Khan A S,et al. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice[J]. Rice,2018,11(1):1-12.
[11]Boorboori M R,Zhang H Y. The role of Serendipita indica (Piriformospora indica) in improving plant resistance to drought and salinity stresses[J]. Biology,2022,11(7):952.
[12]Rajput S,Sengupta P,Kohli I,et al. Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants[M]//New and future developments in microbial biotechnology and bioengineering. Amsterdam:Elsevier,2022:93-110.
[13]Yaghoubian Y,Goltapeh E M,Pirdashti H,et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress[J]. Agricultural Research,2014,3(3):239-245.
[14]Hosseini F,Mosaddeghi M R,Dexter A R. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses[J]. Plant Physiology and Biochemistry,2017,118:107-120.
[15]Tyagi J,Varma A,Pudake R N. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress[J]. European Journal of Soil Biology,2017,81:1-10.
[16]Xu L,Wang A A,Wang J,et al. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes[J]. The Crop Journal,2017,5(3):251-258.
[17]Zhang W Y,Wang J,Xu L,et al. Drought stress responses in maize are diminished by Piriformospora indica[J]. Plant Signaling & Behavior,2018,13(1):e1414121.
[18]Hosseini F,Mosaddeghi M R,Dexter A R,et al. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses[J]. Planta,2018,247(5):1229-1245.
[19]Ghaffari M R,Mirzaei M,Ghabooli M,et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming[J]. Environmental and Experimental Botany,2019,157:197-210.
[20]Ahmadvand G,Hajinia S. Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress[J]. Crop and Pasture Science,2018,69(6):594.
[21]Tsai H J,Shao K H,Chan M T,et al. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems[J]. Plant Signaling & Behavior,2020,15(2):1722447.
[22]Mohsenifard E,Ghabooli M,Mehri N,et al. Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice[J]. Journal of Plant Molecular Breeding,2017,5(1):10-18.
[23]Sun C,Johnson J M,Cai D G,et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes,the expression of drought-related genes and the plastid-localized CAS protein[J]. Journal of Plant Physiology,2010,167(12):1009-1017.
[24]Swetha S,Padmavathi T. Mitigation of drought stress by Piriformospora indica in Solanum melongena L. cultivars[J]. Proceedings of the National Academy of Sciences,India Section B:Biological Sciences,2020,90(3):585-593.
[25]Marulanda A,Porcel R,Barea J M,et al. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species[J]. Microbial Ecology,2007,54(3):543-552.
[26]Kumar M,Yadav V,Tuteja N,et al. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica[J]. Microbiology,2009,155(3):780-790.
[27]Sirrenberg A,Gbel C,Grond S,et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum,2007,131(4):581-589.
[28]Pasternak T P,tvs K,Domoki M,et al. Linked activation of cell division and oxidative stress defense in alfalfa leaf protoplast-derived cells is dependent on exogenous auxin[J]. Plant Growth Regulation,2007,51(2):109-117.
[29]Liu X,Li L M,Li M J,et al. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought[J]. Scientific Reports,2018,8:2250.
[30]Jamil A,Riaz S,Ashraf M,et al. Gene expression profiling of plants under salt stress[J]. Critical Reviews in Plant Sciences,2011,30(5):435-458.
[31]Reshna O P,Beena R,Joy M,et al. Elucidating the effect of growth promoting endophytic fungus Piriformospora indica for seedling stage salinity tolerance in contrasting rice genotypes[J]. Journal of Crop Science and Biotechnology,2022,25(5):583-598.
[32]Requena N,Perez-Solis E,Azcón-Aguilar C,et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology,2001,67(2):495-498.
[33]Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology,2007,428:419-438.
[34]Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
[35]Jouyban Z. The effects of salt stress on plant growth[J]. Technical Journal Engineering and Applied Sciences,2012,2(1):7-10.
[36]Porcel R,Aroca R,Ruiz-Lozano J M.Salinity stress alleviation using arbuscular mycorrhizal fungi.A review[J]. Agronomy for Sustainable Development,2012,32(1):181-200.
[37]Abdelaziz M E,Abdelsattar M,Abdeldaym E A,et al. Piriformospora indica alters Na+/K+ homeostasis,antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Scientia Horticulturae,2019,256:108532.
[38]Alif Ali B S,Beena R,Stephen K. Combined effect of high temperature and salinity on growth and physiology of rice (Oryza sativa L.)[J]. Agricultural Research Journal,2021,58(5):783-788.
[39]Andrés-Barrao C,Lafi F F,Alam I,et al. Complete genome sequence analysis of Enterobacter sp. SA187,a plant multi-stress tolerance promoting endophytic bacterium[J]. Frontiers in Microbiology,2017,8:2023.
[40]de Zélicourt A,Synek L,Saad M M,et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production[J]. PLoS Genetics,2018,14(3):e1007273.
[41]Ghorbani A,Razavi S M,Ghasemi Omran V O,et al. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth,gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.)[J]. Plant Biology,2018,20(4):729-736.
[42]Ghorbani A,Razavi S M,Omran V O G,et al. Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato[J]. Russian Journal of Plant Physiology,2018,65(6):898-907.
[43]Hassani D,Khalid M,Huang D F,et al. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L.[J]. Acta Biochimica et Biophysica Sinica,2019,51(3):301-312.
[44]de Vries F T,Griffiths R I,Knight C G,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368(6488):270-274.
[45]Manikanta C L N,Beena R,Rejeth R. Root anatomical traits influence water stress tolerance in rice (Oryza sativa L.)[J]. Journal of Crop Science and Biotechnology,2022,25(4):421-436.
[46]Jogawat A,Saha S,Bakshi M,et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress[J]. Plant Signaling & Behavior,2013,8(10):e26891.
[47]Alikhani M,Khatabi B,Sepehri M,et al. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica[J]. Molecular BioSystems,2013,9(6):1498-1510.
[48]Abdelaziz M E,Kim D,Ali S,et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions[J]. Plant Science,2017,263:107-115.
[49]Li L,Li L,Wang X Y,et al. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula[J]. Plant Physiology and Biochemistry,2017,119:211-223.
[50]Nivedita,Gazara R K,Khan S,et al. Comparative transcriptome profiling of rice colonized with beneficial endophyte,Piriformospora indica,under high salinity environment[J]. Molecular Biology Reports,2020,47(10):7655-7673.
[51]Sanskriti B,Shatrupa S,Madhulika S,et al. Augmentative role of Piriformospora indica fungus and plant growth promoting bacteria in mitigating salinity stress in Trigonella foenum-graecum[J]. Journal of Applied Biology & Biotechnology,2022,10(1):85-94.
[52]Khalid M,Hassani D,Liao J L,et al. An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes,phytohormones,and antioxidants in Brassica campestris ssp. chinensis[J]. Environmental and Experimental Botany,2018,153:89-99.
[53]Anschütz U,Becker D,Shabala S.Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J]. Journal of Plant Physiology,2014,171(9):670-687.
[54]Shabala S.Signalling by potassium:another second messenger to add to the list?[J]. Journal of Experimental Botany,2017,68(15):4003-4007.
[55]Yun P,Xu L,Wang S S,et al. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot[J]. Plant Growth Regulation,2018,86(2):323-331.
[56]Ahmad P,Jaleel C A,Sharma S.Antioxidant defense system,lipid peroxidation,proline-metabolizing enzymes,and biochemical activities in two Morus alba genotypes subjected to NaCl stress[J]. Russian Journal of Plant Physiology,2010,57(4):509-517.
[57]Ahmad P,Ashraf M,Hakeem K R,et al. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea[J]. Journal of Plant Interactions,2014,9(1):1-9.
[58]Barragán V,Leidi E O,Andrés Z,et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. The Plant Cell,2012,24(3):1127-1142.
[59]Shabala S,Pottosin I.Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J]. Physiologia Plantarum,2014,151(3):257-279.
[60]Ghazanfar B,Cheng Z,Wu C,et al. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced NaCl tolerance by regulation of NAC1 & LeNHX1 gene expression and improved photosynthetic performance in tomato seedlings[J]. Pakistan Journal of Botany,2016,48(3):1209-1217.
[61]Jogawat A,Vadassery J,Verma N,et al. PiHOG1,a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica,confers salinity stress tolerance in rice plants[J]. Scientific Reports,2016,6:36765.

相似文献/References:

[1]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(24):116.
[2]李光,龚宁.干旱胁迫对金线兰POD活性及同工酶酶谱的影响[J].江苏农业科学,2014,42(11):208.
 Li Guang,et al(08).Effects of drought stress on activity and isoenzyme zymogram of POD in Anoectochilus roxburghii[J].Jiangsu Agricultural Sciences,2014,42(24):208.
[3]陈莹,钟理,赵丽丽,等.截叶铁扫帚种子萌发期对岩溶生境高钙干旱的生理生化反应[J].江苏农业科学,2014,42(09):335.
 Chen Ying,et al.Physiological and biochemical responses of Lespedeza cuneata seedlings to different calcium and drought stresses in karst habitats[J].Jiangsu Agricultural Sciences,2014,42(24):335.
[4]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(24):362.
[5]岳莉然,孙妙婷.紫叶酢浆草光合特性及耐旱性研究[J].江苏农业科学,2013,41(08):169.
 Yue Liran,et al.Study on photosynthetic characteristics and drought tolerance of Oxalis triangularis cv. purpurea[J].Jiangsu Agricultural Sciences,2013,41(24):169.
[6]李鹏,刘济明,颜强,等.干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J].江苏农业科学,2014,42(08):181.
 Li Peng,et al.Effects of drought stress on reproduction and some physiological characteristics of Drepanostachyum luodianense[J].Jiangsu Agricultural Sciences,2014,42(24):181.
[7]程小毛,罗翠芹.不同土壤水分处理对香樟幼苗生理特性的影响[J].江苏农业科学,2013,41(09):171.
 Cheng Xiaomao,et al.Effects of different soil water treatments on physiological characteristics of Cinnamomum camphora seedlings[J].Jiangsu Agricultural Sciences,2013,41(24):171.
[8]杨阳,刘秉儒,贾倩民,等.赤霉素对干旱胁迫下沙冬青种子萌发的影响[J].江苏农业科学,2014,42(05):271.
 Yang Yang,et al.Effect of gibberellin on seed germination of Ammopiptanthus mongolicus under drought stress[J].Jiangsu Agricultural Sciences,2014,42(24):271.
[9]于惠琳,史振声,丛玲,等.干旱胁迫下甜高粱和粒用高粱光合及生理响应比较[J].江苏农业科学,2014,42(02):72.
 Yu Huilin,et al.Comparative photosynthetic and physiological response of sweet sorghum and grain sorghum under drought stress[J].Jiangsu Agricultural Sciences,2014,42(24):72.
[10]吴庆贵,杨敬天,邹利娟,等.珙桐幼苗生理生态特性对土壤干旱胁迫的响应[J].江苏农业科学,2014,42(02):119.
 Wu Qinggui,et al.Effects of drought stress on physiological and biochemical parameters of Davidia involucrata[J].Jiangsu Agricultural Sciences,2014,42(24):119.

备注/Memo

备注/Memo:
收稿日期:2023-02-28
基金项目:荆州市科技计划项目(编号:2021CC28-22)。
作者简介:陈建珍(1978—),女,山西晋中人,博士,高级实验师,主要研究方向为作物抗逆生理生态。E-mail:cjz1978610@163.com。
更新日期/Last Update: 2023-12-20