|本期目录/Table of Contents|

[1]董舒超,张静雯,凌嘉怡,等.番茄群体果实光泽度评价及全基因组关联分析[J].江苏农业科学,2024,52(5):36-41.
 Dong Shuchao,et al.Evaluation and genome-wide association analysis of fruit glossiness of tomato population[J].Jiangsu Agricultural Sciences,2024,52(5):36-41.
点击复制

番茄群体果实光泽度评价及全基因组关联分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第5期
页码:
36-41
栏目:
生物技术
出版日期:
2024-03-05

文章信息/Info

Title:
Evaluation and genome-wide association analysis of fruit glossiness of tomato population
作者:
董舒超12张静雯13凌嘉怡14洪骏5谢紫欣13张胜军6宋刘霞12王银磊12赵统敏12赵丽萍12
1.江苏省农业科学院蔬菜研究所,江苏南京 210014; 2.江苏省高效园艺作物遗传改良重点实验室,江苏南京 210014;3.南京农业大学园艺学院,江苏南京 210095; 4.扬州大学园艺园林学院,江苏扬州 225100;5.阿卜杜拉国王科技大学沙漠农业研究中心,沙特阿拉伯吉达 23955; 6.伊犁哈萨克自治州农业科学研究所,新疆伊宁 835000
Author(s):
Dong Shuchaoet al
关键词:
番茄果实光泽度全基因组关联分析候选基因
Keywords:
-
分类号:
S641.201
DOI:
-
文献标志码:
A
摘要:
果实光泽度是评价番茄外观品质的重要指标之一。为挖掘高果实光泽度的番茄种质资源和调控番茄果实光泽度的关键基因,利用微孔光泽度仪NHG60M,于2023年春季对201份大果番茄、88份樱桃番茄和8份醋栗番茄种质的第2穗成熟果实表面光泽度进行快速无损测定,并进行统计分析和全基因组关联分析(Genome-Wide Association Studies,GWAS)。鉴定出果实光泽度在1.13~2.30之间的低光泽种质TS-21、TS-413、TS-270、TS-594、TS-604、TS-256、TS-258、TS-272、TS-643和TS-195,以及果实光泽度在11.90~18.70之间的高光泽种质 TS-203、TS-653、TS-543、TS-588、TS-592、TS-587、TS-539、TS-210、TS-519和TS-577。GWAS分析共检测到2个与番茄果实光泽度显著关联的SNP位点:位于1号染色体63 041 874 bp位置的S01.1826715和位于5号染色体 8 787 996 bp 位置的S05.0271578,2个位点分别可以解释15.67%和33.62%的表型变异。挖掘到2个调控番茄果实光泽度的候选基因,基因ID分别为Solyc05g014760和 Solyc05g014710,2个基因主要在番茄果实中表达,分别编码细胞分裂蛋白激酶10和Remorin蛋白,与细胞壁形成、表皮角质积累的调控具有相关性。研究结果有助于解析番茄果实光泽度的遗传基础及其调控机制,为番茄外观品质遗传改良奠定基础。
Abstract:
-

参考文献/References:

[1]Liu X F,Ge X S,An J B,et al. CsCER6 and CsCER7 influence fruit glossiness by regulating fruit cuticular wax accumulation in cucumber [J]. International Journal of Molecular Sciences,2023,24(2):1135.
[2]周蓉,赵统敏,赵丽萍,等. 高光泽番茄育种及果实表面光泽度[J]. 江苏农业学报,2018,34(6):1437-1440.
[3]Zhai X L,Wu H Y,Wang Y R,et al. The fruit glossiness locus,dull fruit (D),encodes a C2H2-type zinc finger transcription factor,CsDULL,in cucumber (Cucumis sativus L.) [J]. Horticulture Research,2022,9(7):146.
[4]Yang Y,Cai C X,Wang Y P,et al. Cucumber glossy fruit 1 (CsGLF1) encodes the zinc finger protein 6 that regulates fruit glossiness by enhancing cuticular wax biosynthesis [J]. Horticulture Research,2023,10(1):237.
[5]Chaudhary J,Alisha A,Bhatt V,et al. Mutation breeding in tomato:advances,applicability and challenges [J]. Plants,2019,8(5):128.
[6]Dehghan A. Genome-wide association studies [J]. Methods in Molecular Biology,2018,1793:37-49.
[7]Wallace J G,Rodgers-Melnick E,Buckler E S. On the Road to Breeding 4.0:unraveling the good,the bad,and the boring of crop quantitative genomics [J]. Annual Review of Genetics,2018,52(1):421-444.
[8]Susmitha P,Kumar P,Yadav P,et al. Genome-wide association study as a powerful tool for dissecting competitive traits in legumes [J]. Frontiers in Plant Science,2023,14:1123631.
[9]Su Y Z,Zhang Z,He J B,et al. Gene-allele system of shade tolerance in southern China soybean germplasm revealed by genome-wide association study using gene-allele sequence as markers [J]. TAG. Theoretical and Applied Genetics,2023,136(7):152.
[10]Zia M A B,Yousaf M F,Asim A,et al. An overview of genome-wide association mapping studies in Poaceae species (model crops:wheat and rice) [J]. Molecular Biology Reports,2022,49(12):12077-12090.
[11]Gai W,Yang F,Yuan L,et al. Multiple-model GWAS identifies optimal allelic combinations of quantitative trait loci for malic acid in tomato [J]. Horticulture Research,2023,10(4):23-37.
[12]Wu S,Tohge T,Cuadros-Inostroza ,et al. Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions [J]. Molecular Plant,2018,11(8):118-134.
[13]Ferreira E G C,Marcelino-Guimares F C. Mapping major disease resistance genes in soybean by genome-wide association studies [J]. Methods in Molecular Biology,2022,2481:313-340.
[14]Chang H X,Lipka A E,Domier L L,et al. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies [J]. Phytopathology,2016,106(10):1139-1151.
[15]Liu S X,Qin F. Genetic dissection of maize drought tolerance for trait improvement [J]. Molecular Breeding,2021,41(2):8.
[16]Wang Q,Tang J L,Han B,et al. Advances in genome-wide association studies of complex traits in rice [J]. Theoretical and Applied Genetics,2020,133(5):1415-1425.
[17]Tieman D,Zhu G T,Resende M F R,et al. A chemical genetic roadmap to improved tomato flavor [J]. Science,2017,355 (6323):391-394.
[18]Zhu G T,Wang S C,Huang Z J,et al. Rewiring of the fruit metabolome in tomato breeding [J]. Cell,2018,172(1/2):249-261.
[19]Wang J B,Zhang Z W. GAPIT version 3:boosting power and accuracy for genomic association and prediction [J]. Genomics,Proteomics & Bioinformatics,2021,19(4):629-640.
[20]Kunst L,Samuels A L. Biosynthesis and secretion of plant cuticular wax [J]. Progress in Lipid Research,2003,42(1):51-80.
[21]Liu D C,Yang L,Zheng Q,et al. Analysis of cuticular wax constituents and genes that contribute to the formation of ‘glossy Newhall’,a spontaneous bud mutant from the wild-type ‘Newhall’ navel orange [J]. Plant Molecular Biology,2015,88(6):573-590.
[22]Trivedi P,Nguyen N,Klavins L,et al. Analysis of composition,morphology,and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant [J]. Food Chemistry,2021,354:129517.
[23]Winter D,Vinegar B,Nahal H,et al. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets [J]. PLoS One,2017,2(8):718.
[24]Liu L S,Jose S B,Campoli C,et al. Conserved signaling components coordinate epidermal patterning and cuticle deposition in barley [J]. Nature Communications,2022,13(1):6050.
[25]胡小倩,张颖翌,李鑫,等. 植物中Remorin蛋白的研究进展[J]. 生物技术通报,2020,36(8):136-143.
[26]Lucau-Danila A,Laborde L,Legrand S,et al. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.) [J]. BMC Plant Biology,2010,10(1):122.
[27]Naeem M,Zhao W,Ahmad N,et al. Beyond green and red:unlocking the genetic orchestration of tomato fruit color and pigmentation [J]. Functional & Integrative Genomics,2023,23(3):243.
[28]Liu G S,Li H L,Grierson D,et al. NAC transcription factor family regulation of fruit ripening and quality:a review [J]. Cells,2022,11(3):525.
[29]董邵云. 黄瓜果皮光泽性状的遗传机制与基因定位[D]. 北京:中国农业科学院,2014:2.
[30]周蓉,徐丽萍,王银磊,等. 樱桃番茄果实光泽度测定方法的建立和应用[J]. 江苏农业学报,2018,34(3):623-629.
[31]Strong W J. Breeding experiments with the cucumber (Cucumis sativus L.) [J]. Scientific Agriculture,1931,11:333-346.
[32]杜辉. 黄瓜固定标记图谱的构建及果皮光泽(D)、小刺(ss)性状定位及甘蓝抽薹性状基因的分子标记定位[D]. 上海:上海交通大学,2008:7.
[33]Yang X Q,Zhang W W,Li Y,et al. High-resolution mapping of the dull fruit skin gene D in cucumber (Cucumis sativus L.) [J]. Molecular Breeding,2014,33(1):15-22.
[34]Kooistra E. Inheritance of fruit flesh and skin colors in powdery mildew resistant cucumbers (Cucumis sativus L.) [J]. Euphytica,1971,20:521-523.
[35]Gao L Y,Cao J J,Gong S Y,et al. The COPⅡ subunit CsSEC23 mediates fruit glossiness in cucumber [J]. The Plant Journal,2023,116(2):524-540.
[36]Liang B,Sun Y F,Wang J,et al. Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness [J]. Journal of Experimental Botany,2021,72(7):2403-2418.
[37]Bres C,Petit J,Reynoud N,et al. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit [J]. Molecular Horticulture,2022,2(1):14.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(5):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(5):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(5):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(5):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(5):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(5):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
 Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(5):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(5):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(5):259.
[11]郏艳红,吉立柱.番茄脐腐病发生机理初步研究[J].江苏农业科学,2015,43(04):158.
 Jia Yanhong,et al.Preliminary study on mechanism of tomato navel rot[J].Jiangsu Agricultural Sciences,2015,43(5):158.
[12]宋佳,王辉,李文丽,等.番茄筋腐病抗、感材料叶片和果实中主要矿质营养元素的分析[J].江苏农业科学,2018,46(09):112.
 Song Jia,et al.Determination and analysis of main mineral elements in leaves and fruits of disease-resistant and susceptible materials[J].Jiangsu Agricultural Sciences,2018,46(5):112.
[13]张寻梦,赵子皓,江晓东.基于图像和YOLOv3的番茄果实表型参数计算及重量模拟[J].江苏农业科学,2023,51(10):193.
 Zhang Xunmeng,et al.Phenotypic parameter calculation and weight simulation of tomato fruit based on image and YOLOv3[J].Jiangsu Agricultural Sciences,2023,51(5):193.

备注/Memo

备注/Memo:
收稿日期:2024-01-30
基金项目:江苏省自然科学基金青年基金(编号:BK20220743);国家自然科学基金青年基金(编号:32202489);江苏省重点研发计划现代农业项目(编号:BE2022339);江苏省现代农业(蔬菜)产业技术体系建设专项(编号:JATS[2023]391);江苏省种业振兴“揭榜挂帅”项目[编号:JBGS(2021)066];南京市品种选育专项(编号:202210023)。
作者简介:董舒超(1991—),女,湖北荆州人,博士,助理研究员,主要从事番茄果实光泽度调控分子机理研究。E-mail:20221007@jaas.ac.cn。
通信作者:赵丽萍,硕士,副研究员,主要从事高品质番茄育种研究。E-mail:282890962@qq.com。
更新日期/Last Update: 2024-03-05