|本期目录/Table of Contents|

[1]李欣,李鲁华,任明见,等.小麦TaMICU1-6A基因的克隆、生物信息学及表达分析[J].江苏农业科学,2024,52(5):42-51.
 Lixin,et al.Cloning,bioinformatics and expression analysis of TaMICU1-6A gene in wheat[J].Jiangsu Agricultural Sciences,2024,52(5):42-51.
点击复制

小麦TaMICU1-6A基因的克隆、生物信息学及表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第5期
页码:
42-51
栏目:
生物技术
出版日期:
2024-03-05

文章信息/Info

Title:
Cloning,bioinformatics and expression analysis of TaMICU1-6A gene in wheat
作者:
李欣李鲁华任明见安畅洪鼎立赵鹏鹏徐如宏
贵州大学农学院,贵州贵阳 550025;国家小麦改良中心贵阳分中心,贵州贵阳 550025
Author(s):
Lixinet al
关键词:
小麦TaMICU1基因基因克隆生物信息学分析基因表达
Keywords:
-
分类号:
Q78;S512.101
DOI:
-
文献标志码:
A
摘要:
为了探讨线粒体稳态调节蛋白TaMICU1基因在小麦生长发育中的功能,以小麦中国春为材料,对其TaMICU1-6A基因进行克隆、生物信息学分析、表达分析研究,结果表明,小麦TaMICU1-6A基因全长为1 398 bp,编码465个氨基酸,定位于线粒体,具有2个EF-hand家族的保守结构域,启动子含3种激素响应元件、3种光响应相关反应元件、1个缺氧特异性诱导相关元件;多重序列比对发现,其与野生二粒小麦、乌拉尔图小麦、小麦中的同源蛋白或同源基因的亲缘关系比较近。RT-PCR结果表明,TaMICU1-6A基因具有组织特异性,不同非生物胁迫、不同激素处理下在根、茎、叶中的表达水平不同。黑暗处理下,TaMICU1-6A基因在根、茎、叶中的表达水平均在6 h时达到最低;低温处理下,TaMICU1-6A基因在根、茎中的表达水平呈先降后升的趋势;在赤霉素处理下,TaMICU1-6A基因在叶片中的表达水平在6 h时达到最高。综上所述,推测TaMICU1-6A基因通过激素介导的信号途径参与不同的非生物胁迫。期待本研究结果可为进一步探讨小麦TaMICU1基因在逆境下的生物学功能提供一定的参考价值。
Abstract:
-

参考文献/References:

[1]Berridge M J,Lipp P,Bootman M D. The versatility and universality of calcium signalling[J]. Nature Reviews Molecular Cell Biology,2000,1(1):11-21.
[2]Sanders D,Pelloux J,Brownlee C,et al. Calcium at the crossroads of signaling[J]. The Plant Cell,2002,14(S1):S401-S417.
[3]Hetherington A M,Brownlee C. The generation of Ca2+signals in plants[J]. Annual Review of Plant Biology,2004,55:401-427.
[4]Simeunovic A,Mair A,Wurzinger B,et al. Know where your clients are:subcellular localization and targets of calcium-dependent protein kinases[J]. Journal of Experimental Botany,2016,67(13):3855-3872.
[5]Jiang Z H,Zhu S,Ye R,et al. Relationship between NaCl-and H2O2-induced cytosolic Ca2+increases in response to stress in Arabidopsis[J]. PLoS One,2013,8(10):e76130.
[6]Schulz P,Herde M,Romeis T. Calcium-dependent protein kinases:hubs in plant stress signaling and development[J]. Plant Physiology,2013,163(2):523-530.
[7]Yuan F,Yang H M,Xue Y,et al. OSCA1 mediates osmotic-stress-evoked Ca2+increases vital for osmosensing in Arabidopsis[J]. Nature,2014,514(7522):367-371.
[8]Foreman J,Demidchik V,Bothwell J H F,et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J]. Nature,2003,422(6930):442-446.
[9]Monshausen G B,Messerli M A,Gilroy S. Imaging of the yellow cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+follow oscillating increases in growth in root hairs of Arabidopsis[J]. Plant Physiology,2008,147(4):1690-1698.
[10]Pei Z M,Murata Y,Benning G,et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature,2000,406(6797):731-734.
[11]Kim T H,Bhmer M,Hu H H,et al. Guard cell signal transduction network:advances in understanding abscisic acid,CO2,and Ca2+signaling[J]. Annual Review of Plant Biology,2010,61:561-591.
[12]Jouaville L S,Ichas F,Holmuhamedov E L,et al. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes[J]. Nature,1995,377(6548):438-441.
[13]Hajnóczky G,Robb-Gaspers L D,Seitz M B,et al. Decoding of cytosolic calcium oscillations in the mitochondria[J]. Cell,1995,82(3):415-424.
[14]Kaftan E J,Xu T,Abercrombie R F,et al. Mitochondria shape hormonally induced cytoplasmic calcium oscillations and modulate exocytosis[J]. Journal of Biological Chemistry,2000,275(33):25465-25470.
[15]Orrenius S,Zhivotovsky B,Nicotera P. Regulation of cell death:the calcium-apoptosis link[J]. Nature Reviews Molecular Cell Biology,2003,4(7):552-565.
[16]Duchen M R,Verkhratsky A,Muallem S. Mitochondria and calcium in health and disease[J]. Cell Calcium,2008,44(1):1-5.
[17]Balaban R S.The role of Ca2+signaling in the coordination of mitochondrial ATP production with cardiac work[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2009,1787(11):1334-1341.
[18]Lemasters J J,Theruvath T P,Zhong Z,et al. Mitochondrial calcium and the permeability transition in cell death[J]. Biochimica et Biophysica Acta-Bioenergetics,2009,1787(11):1395-1401.
[19]Clapham D E. Calcium signaling[J]. Cell,2007,131(6):1047-1058.
[20]Laude A J,Simpson A W M. Compartmentalized signalling:Ca2+compartments,microdomains and the many facets of Ca2+signalling[J]. The FEBS Journal,2009,276(7):1800-1816.
[21]Wagner S,Behera S,de Bortoli S,et al. The EF-hand Ca2+binding protein MICU choreographs mitochondrial Ca2+dynamics in Arabidopsis[J]. The Plant Cell,2015,27(11):3190-3212.
[22]Kamer K J,Mootha V K. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter[J]. EMBO Reports,2014,15(3):299-307.
[23]Baughman J M,Perocchi F,Girgis H S,et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter[J]. Nature,2011,476(7360):341-345.
[24]de Stefani D,Raffaello A,Teardo E,et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter[J]. Nature,2011,476(7360):336-340.
[25]Chaudhuri D,Sancak Y,Mootha V K,et al. MCU encodes the pore conducting mitochondrial calcium currents[J]. eLife,2013,2:e00704.
[26]Perocchi F,Gohil V M,Girgis H S,et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+uptake[J]. Nature,2010,467(7313):291-296.
[27]Mallilankaraman K,Doonan P,Cárdenas C,et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+uptake that regulates cell survival[J]. Cell,2012,151(3):630-644.
[28]Wang L L,Yang X,Li S W,et al. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake[J]. The EMBO Journal,2014,33(6):594-604.
[29]Teardo E,Carraretto L,Wagner S,et al. Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo[J]. Plant Physiology,2017,173(2):1355-1370.
[30]Bick A G,Calvo S E,Mootha V K. Evolutionary diversity of the mitochondrial calcium uniporter[J]. Science,2012,336(6083):886.
[31]Logan C V,Szabadkai G,Sharpe J A,et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling[J]. Nature Genetics,2014,46(2):188-193.
[32]Lewis-Smith D,Kamer K J,Griffin H,et al. Homozygous deletion in MICU1 presenting with fatigue and lethargy in childhood[J]. Neurology-Genetics,2016,2(2):e59.
[33]Stael S,Wurzinger B,Mair A,et al. Plant organellar calcium signalling:an emerging field[J]. Journal of Experimental Botany,2012,63(4):1525-1542.
[34]Wang M Y,Teng Y B. Genome-wide identification and analysis of MICU genes in land plants and their potential role in calcium stress[J]. Gene,2018,670:174-181.
[35]Peng L N,Xu Y Q,Wang X,et al. Overexpression of paralogues of the wheat expansin gene TaEXPA8 improves low-temperature tolerance in Arabidopsis[J]. Plant Biology,2019,21(6):1119-1131.
[36]Xu C J,Luo M Z,Sun X J,et al. SiMYB19 from foxtail millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field[J]. International Journal of Molecular Sciences,2022,23(2):756.
[37]Ma Z M,Jin Y M,Wu T,et al. OsDREB2B,an AP2/ERF transcription factor,negatively regulates plant height by conferring GA metabolism in rice[J]. Frontiers in Plant Science,2022,13:1007811.
[38]MAngale P G,Staveley B E. Inhibition of mitochondrial calcium uptake 1 in Drosophila neurons[J]. Genetics and Molecular Research,2017,16(1):gmr16019436.
[39]Zeng H Q,Zhang Y X,Zhang X J,et al. Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling[J]. Frontiers in Plant Science,2017,8:877.
[40]Lamers J,van der Meer T,Testerink C. How plants sense and respond to stressful environments[J]. Plant Physiology,2020,182(4):1624-1635.
[41]Reddy V S,Reddy A S N. Proteomics of calcium-signaling components in plants[J]. Phytochemistry,2004,65(12):1745-1776.
[42]Brunetti S C,Arseneault M K M,Wright J A,et al. The stress induced caleosin,RD20/CLO3,acts as a negative regulator of GPA1 in Arabidopsis[J]. Plant Molecular Biology,2021,107(3):159-175.
[43]Magnan F,Ranty B,Charpenteau M,et al. Mutations in AtCML9,a calmodulin-like protein from Arabidopsis thaliana,alter plant responses to abiotic stress and abscisic acid[J]. Plant Journal,2008,56(4):575-589.
[44]Hazak O,Mamon E,Lavy M,et al. A novel Ca2+-binding protein that can rapidly transduce auxin responses during root growth[J]. PLoS Biology,2019,17(7):e3000085.

相似文献/References:

[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及 高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
 Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(5):83.
[5]刘亚柏.有机水稻—红花草轮作对有机稻产量及土壤肥力的影响[J].江苏农业科学,2014,42(12):72.
 Liu Yabo,et al.Effects of organic rice-clover rotation on yield and soil fertility of organic rice[J].Jiangsu Agricultural Sciences,2014,42(5):72.
[6]杜菲,郑慧,李宏军.以还原糖含量为指标的膨化小麦辅料麦汁糖化工艺优化[J].江苏农业科学,2014,42(11):306.
 Du Fei,et al(0).Optimization of saccharification process of puffed wheat wort taking reducing sugar content as indicator[J].Jiangsu Agricultural Sciences,2014,42(5):306.
[7]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
 Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(5):159.
[8]郑光耀,高丽萍,尹有干,等.冷杉针叶三萜酸在小麦生产上的应用[J].江苏农业科学,2014,42(11):98.
 Zheng Guangyao,et al(98).Application of triterpene acids from fir needles in wheat production[J].Jiangsu Agricultural Sciences,2014,42(5):98.
[9]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
 Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(5):71.
[10]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
 Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(5):74.

备注/Memo

备注/Memo:
收稿日期:2023-05-18
基金项目:国家自然科学基金(编号:3216150357);贵州省科技计划项目(编号:黔科合基础〔2020〕1Z018 号);贵州省科技支撑计划项目(编号:黔科合支撑〔2021〕一般272)。
作者简介:李欣(1998—),女,贵州毕节人,硕士研究生,研究方向为作物学遗传育种。E-mail:1196372633@qq.com。
通信作者:徐如宏,教授,主要从事小麦遗传育种研究工作。E-mail:xrhgz@163.com。
更新日期/Last Update: 2024-03-05