|本期目录/Table of Contents|

[1]张思源,欧江涛,王资生,等.基因组学技术及其在水产动物研究中的应用综述[J].江苏农业科学,2017,45(15):1-6.
 Zhang Siyuan,et al.Genomics technology and its application in aquatic animal research:a review[J].Jiangsu Agricultural Sciences,2017,45(15):1-6.
点击复制

基因组学技术及其在水产动物研究中的应用综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年15期
页码:
1-6
栏目:
专论与综述
出版日期:
2017-08-05

文章信息/Info

Title:
Genomics technology and its application in aquatic animal research:a review
作者:
张思源12 欧江涛1 王资生1 柴志欣2 钟金城2
1.盐城工学院海洋与生物工程学院,江苏盐城 224051; 2.西南民族大学青藏高原研究院,四川成都 610041
Author(s):
Zhang Siyuanet al
关键词:
基因组测序技术功能基因组学水产动物
Keywords:
-
分类号:
Q789;S917
DOI:
-
文献标志码:
A
摘要:
自人类基因组计划完成以来,基因组学进入功能研究时代。基因组研究技术引入水产动物的研究后,推进了水产动物基因组的结构和功能研究,解析和诠释了水产动物生物学现象的遗传基础和分子机制,在遗传育种、疾病防治和医药等方面的研究应用也取得较大进展。本文综述了基因组学研究中的测序技术、DNA分子标记技术、基因芯片、RNAi和基因编辑等技术的研究现状,总结这些技术在水产动物中的研究应用,分析其在水产动物研究中的机遇和挑战,为水产动物的发育、繁殖和抗逆育种等研究应用提供重要基因资源基础。
Abstract:
-

参考文献/References:

[1]李振刚. 分子遗传学[M]. 3版.北京:科学出版社,2012:17-25.
[2]桂建芳. 水生生物学科学前沿及热点问题[J]. 科学通报,2015,60(22):2051-2057.
[3]Shendure J,Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology,2008,26(10):1135-1145.
[4]Chen Y S,Lee C H,Hung M Y,et al. DNA sequencing using electrical conductance measurements of a DNA polymerase[J]. Nature Nanotechnology,2013,8(6):452-458.
[5]Niedringhaus T P,Milanova D,Kerby M B,et al. Landscape of next-generation sequencing technologies[J]. Analytical Chemistry,2011,83(12):4327-4341.
[6]Feng Y,Zhang Y,Ying C,et al. Nanopore-based fourth-generation DNA sequencing technology[J]. Genomics,Proteomics & Bioinformatics,2015,13(1):4-16.
[7]Koh K D,Balachander S,Hesselberth J R,et al. Ribose-seq:global mapping of ribonucleotides embedded in genomic DNA[J]. Nature Methods,2015,12(3):251-257.
[8]Ding J,Taylor M S,Jackson A P,et al. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq[J]. Nature Protocols,2015,10(9):1433-1444.
[9]Elshire R J,Glaubitz J C,Sun Q,et al. A robust,simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLoS One,2011,6(5):e19379.
[10]Borém A,Fritsche-Neto R. Omics in plant breeding[M]. Hoboken,New Jersey,USA:John Wiley&Sons,2014:13-28.
[11]Laforsch C,Ive N,Sit R,et al. A genome for the environment[J]. Science,2011,331(6017):539-540.
[12]Zhang G,Fang X,Guo X,et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature,2012,490(7418):49-54.
[13]Howe K,Clark M D,Torroja C F,et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature,2013,496(7446):498-503.
[14]Kettleborough R N,Busch-Nentwich E M,Harvey S A,et al. A systematic genome-wide analysis of zebrafish protein-coding gene function[J]. Nature,2013,496(7446):494.
[15]Wu C,Zhang D,Kan M,et al. The draft genome of the large yellow croaker reveals well-developed innate immunity[J]. Nature Communications,2014,5:5227.
[16]Simakov O,Marletaz F,Cho S J,et al. Insights into bilaterian evolution from three spiralian genomes[J]. Nature,2013,493(7433):526-531.
[17]Borém A,Fritsche-Neto R. Biotechnology and plant breeding:applications and approaches for developing improved cultivars[M]. Amsterdam,the Netherlands:Elsevier,2014:19-45.
[18]Verma A,Singh A. Animal biotechnology:models in discovery and translation[M]. New York:Academic Press,2014:289-305.
[19]Graham J,Smith K,Mackenzie K,et al. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs,genomic-SSR and EST-SSR markers[J]. Theoretical and Applied Genetics,2004,109(4):740-749.
[20]Kong L F,Bai J,Li Q. Comparative assessment of genomic SSR,EST-SSR and EST-SNP markers for evaluation of the genetic diversity of wild and cultured Pacific oyster,Crassostrea gigas Thunberg[J]. Aquaculture,2014,420(1):S85-S91.
[21]Qiu Y,Lu H,Zhu J T,et al. Characterization of novel EST-SSR markers and their correlations with growth and nacreous secretion traits in the pearl oyster Pinctada martensii (Dunker)[J]. Aquaculture,2014,420(1):S92-S97.
[22]Xu D,Sun L,Liu S,et al. Polymorphisms of heat shock protein 90 (Hsp90) in the sea cucumber Apostichopus japonicus and their association with heat-resistance[J]. Fish & Shellfish Immunology,2014,41(2):428-436.
[23]于洋. 凡纳滨对虾分子标记的开发及其在遗传育种中的应用[D]. 青岛:中国科学院海洋研究所,2013.
[24]郑小东,马媛媛,程汝滨. 线粒体DNA标记在头足纲动物分子系统性中的应用[J]. 水产学报,2015,39(2):294-303.
[25]Jiao W,Fu X,Dou J,et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing:building up an integrative genomic framework for a bivalve mollusc[J]. DNA Research,2014,21(1):85-101.
[26]Wada Y,Matsuura M,Sugawara M,et al. Development of detection method for novel fusion gene using GeneChip exon array[J]. Journal of Clinical Bioinformatics,2014,4(1):3.
[27]Konings P,Vanneste E,Jackmaert S,et al. Microarray analysis of copy number variation in single cells[J]. Nature Protocols,2012,7(2):281-310.
[28]Barnes M,Freudenberg J,Thompson S,et al. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms[J]. Nucleic Acids Research,2005,33(18):5914-5923.
[29]Thanasaksiri K,Hirono I,Kondo H. Temperature-dependent regulation of gene expression in poly (I ∶C)-treated Japanese flounder,Paralichthys olivaceus[J]. Fish & Shellfish Immunology,2015,45(2):835-840.
[30]Dahle M K,Wessel ,Timmerhaus G,et al. Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes infected with piscine orthoreovirus (PRV)[J]. Fish & Shellfish Immunology,2015,45(2):780-790.
[31]Kuhn R,Schwenk F,Aguet M,et al. Inducible gene targeting in mice[J]. Science,1995,269(5229):1427-1429.
[32]Pauwels K,Podevin N,Breyer D,et al. Engineering nucleases for gene targeting:safety and regulatory considerations[J]. New Biotechnology,2014,31(1):18-27.
[33]Fletcher G L,Hobbs R S,Evans R P,et al. Lysozyme transgenic Atlantic salmon(Salmo salar L.)[J]. Aquaculture Research,2011,42(3):427-440.
[34]叶鼎,朱作言,孙永华. 鱼类基因组操作与定向育种[J]. 中国科学(生命科学),2014,44(12):1253-1261.
[35]Zamore P D,Tuschl T,Sharp P A,et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell,2000,101(1):25-33.
[36]Iwasaki S,Sasaki H M,Sakaguchi Y,et al. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex[J]. Nature,2015,521(7553):533-536.
[37]Kanasty R,Dorkin J R,Vegas A,et al. Delivery materials for siRNA therapeutics[J]. Nature Materials,2013,12(11):967-977.
[38]Hou F,He S,Liu Y,et al. RNAi knock-down of shrimp Litopenaeus vannamei Toll gene and immune deficiency gene reveals their difference in regulating antimicrobial peptides transcription[J]. Developmental & Comparative Immunology,2014,44(2):255-260.
[39]Posiri P,Kondo H,Hirono I,et al. Successful yellow head virus infection of Penaeus monodon requires clathrin heavy chain[J]. Aquaculture,2015,435:480-487.
[40]Yan W,Smith C,Cheng L. Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing[J]. Scientific Reports,2013,3(8):2376.
[41]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[42]Gaj T,Gersbach C A,Barbas C F. ZFN,TALEN,and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology,2013,31(7):397-405.
[43]Gilbert L A,Larson M H,Morsut L,et al. CRISPR-Mediated modular RNA-Guided regulation of transcription in eukaryotes[J]. Cell,2013,154(2):442-451.
[44]Sampson T R,Saroj S D,Llewellyn A C,et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J]. Nature,2013,497(7448):254-257.
[45]Ran F A,Hsu P D,Lin C Y,et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell,2013,154(6):1380-1389.
[46]Fu Y,Foden J A,Khayter C,et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology,2013,31(9):822-826.
[47]Mali P,Aach J,Stranges P B,et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nature Biotechnology,2013,31(9):833-838.
[48]Xiao A,Cheng Z,Kong L,et al. CasOT:a genome-wide Cas9/gRNA off-target searching tool[J]. Bioinformatics,2014,30(8):1180-1182.
[49]Zu Y,Tong X J,Wang Z X,et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nature Methods,2013,10(4):329.
[50]Lundgren M,Charpentier E,Fineran P C. CRISPR:methods and protocols[M]. New York:Humana Press,2015:317-334.
[51]李明辉. 罗非鱼基因敲除技术的建立及其在性别决定与分化研究中的应用[D]. 重庆:西南大学,2014.
[52]Chen R,Im H,Snyder M. Whole-Exome enrichment with the roche NimbleGen SeqCap EZ exome library SR platform[J]. Cold Spring Harbor Protocols,2015(7):634-641.

相似文献/References:

[1]张悦,施唯,李丹,等.灰葡萄孢基因中微卫星序列分析[J].江苏农业科学,2013,41(04):44.
[2]叶巍.乳酸菌DNA序列分析与功能基因研究现状[J].江苏农业科学,2014,42(10):40.
 Ye Wei.Research status of DNA sequence analysis and functional genomics in lactic acid bacteria[J].Jiangsu Agricultural Sciences,2014,42(15):40.
[3]陈思敏,王琳萱,张印红,等.O型口蹄疫病毒基因组测序与分析[J].江苏农业科学,2013,41(12):28.
 Chen Simin,et al.Genome sequencing and analysis of foot and mouth disease virus type O[J].Jiangsu Agricultural Sciences,2013,41(15):28.
[4]骆美蓉,江明锋,张鹏,等.山羊分子生物学研究进展[J].江苏农业科学,2014,42(01):46.
 Luo Meirong,et al.Research progress of molecular biology of goat[J].Jiangsu Agricultural Sciences,2014,42(15):46.
[5]陈纪鹏,刘小林,胡月清.甘蓝型油菜与黑芥种间杂种基因组亲缘关系研究[J].江苏农业科学,2015,43(06):87.
 Chen Jipeng,et al.Study on genome affinity of interspecific hybrids between Brassica napus and B. nigra[J].Jiangsu Agricultural Sciences,2015,43(15):87.
[6]张小飞,孙颖杰,贾赟,等.牙鲆弹状病毒研究进展[J].江苏农业科学,2015,43(01):231.
 Zhang Xiaofei,et al.Research progress of hirame rhabdovirus[J].Jiangsu Agricultural Sciences,2015,43(15):231.
[7]李晓川,周平,王朝海.马铃薯糖转运蛋白家族的全基因组鉴定和表达分析[J].江苏农业科学,2017,45(12):24.
 Li Xiaochuan,et al.Genome identification and expression analysis of potato carbohydrate transporter family[J].Jiangsu Agricultural Sciences,2017,45(15):24.
[8]熊良伟,王帅兵,封琦,等.基于高通量测序的中华鳑鲏基因组微卫星特征分析及标记开发[J].江苏农业科学,2018,46(18):164.
 Xiong Liangwei,et al.Characteristic analysis of genomic microsatellites and development of SSR markers of Chinese bitterling (Rhodeus sinensis) using high-throughput sequencing[J].Jiangsu Agricultural Sciences,2018,46(15):164.
[9]毛立彦,龙凌云,谢振兴,等.中国莲P1B -ATPase亚家族成员的生物信息学分析[J].江苏农业科学,2018,46(22):48.
 Mao Liyan,et al.Bioinformatics analysis of P1B-ATPase subfamily in Nelumbo nucifera[J].Jiangsu Agricultural Sciences,2018,46(15):48.
[10]陈军,周平,王朝海,等.马铃薯糖转运蛋白系统进化关系分析和顺式调控元件鉴定[J].江苏农业科学,2020,48(8):56.
 Chen Jun,et al.Phylogenetic analysis and identification of cis-regulatory element of potato (Solanum tuberosum L.) sugar transporters[J].Jiangsu Agricultural Sciences,2020,48(15):56.

备注/Memo

备注/Memo:
收稿日期:2016-03-29
基金项目:国家自然科学基金(编号:31000072、31570176);国家科技支撑计划子课题(编号:2012BAD13B02);江苏省盐城工学院教育教改研究项目(编号:JY2015A13);江苏省海洋滩涂生物化学与生物技术重点建设实验室项目。
作者简介:张思源(1992—),男,河南新蔡人,硕士研究生,主要从事分子遗传学和基因组学研究。E-mail:siyuan92@163.com。
通信作者:欧江涛,副教授,主要从事分子遗传学和基因组学研究,E-mail:ojt110@126.com;王资生,教授,主要从事分子生物学和海洋工程研究,E-mail:wzs399@126.com;钟金城,教授,主要从事动物遗传学研究,E-mail:zhongjincheng518@126.com。
更新日期/Last Update: 2017-08-05