|本期目录/Table of Contents|

[1]符东顺,何冠谛,付天岭,等.植物重金属抗性基因挖掘和作用机制研究进展[J].江苏农业科学,2018,46(10):18-23.
 Fu Dongshun,et al.Research progress on mining and mechanism of plant heavy metal resistance genes[J].Jiangsu Agricultural Sciences,2018,46(10):18-23.
点击复制

植物重金属抗性基因挖掘和作用机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年10期
页码:
18-23
栏目:
专论与综述
出版日期:
2018-05-20

文章信息/Info

Title:
Research progress on mining and mechanism of plant heavy metal resistance genes
作者:
符东顺1 何冠谛1 付天岭2 何腾兵23
1.贵州大学生命科学学院,贵州贵阳 550025; 2.贵州大学新农村发展研究院,贵州贵阳 550025; 3.贵州大学农学院,贵州贵阳 550025
Author(s):
Fu Dongshunet al
关键词:
植物重金属抗性基因基因定位作用机制
Keywords:
-
分类号:
X53;X173
DOI:
-
文献标志码:
A
摘要:
长期生长在重金属环境中的植物为了更好地适应土壤中重金属的胁迫,进化出一套调控机制来响应重金属的胁迫。主要从有关抗重金属品种发现、抗性基因的挖掘以及遗传机制等方面对近年来的研究展开评述。在抗性基因的挖掘中发现,植物间呈现出不同的抗重金属能力,该能力由基因转录的蛋白控制,这些抗性基因的利用在抗性品种的选育和污染土地的修复等方面具有重要价值。此外,对抗性基因的挖掘手段进行一定的展望。
Abstract:
-

参考文献/References:

[1]Yajima I,Zou C,Li X,et al.Analysis of heavy-metal-mediated disease and development of a novel remediation system based on fieldwork and experimental research [J]. Nihonseigaku Zasshi Japanese Journal of Hygiene,2015,70(2):105.
[2]骆旭添. 水稻苗期耐镉胁迫的QTL定位及其与环境互作效应分析[D]. 福州:福建农林大学,2007.
[3]刘春早,黄益宗,雷鸣,等. 重金属污染评价方法(TCLP)评价资江流域土壤重金属生态风险[J]. 环境化学,2011,30(9):1582-1589.
[4]刘志培,刘双江. 我国污染土壤生物修复技术的发展及现状[J]. 生物工程学报,2015,31(6):901-916.
[5]韦革宏,马占强. 根瘤菌-豆科植物共生体系在重金属污染环境修复中的地位、应用及潜力[J]. 微生物学报,2010,50(11):1421-1430.
[6]贾玉华. 三种植物对重金属Cd和Pb抗性及修复潜力的研究[D]. 乌鲁木齐:新疆农业大学,2008.
[7]Thurman D A. Mechanism of metal tolerance in higher plants[J]. Pollution Monitoring,1981,2:239-249.
[8]Baker A J M. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery,1989,1:81-126.
[9]吴彬艳. 广义景天属和蝇子草属耐受与富集重金属种质筛选及蝇子草属杂交初探[D]. 北京:北京林业大学,2016.
[10]邓滔. 井栏边草和蜈蚣草对As-Pb胁迫的富集作用[D]. 南京:南京林业大学,2008.
[11]杨园,王艮梅,曹莉,等. 生物炭和猪粪堆肥对Cd污染土壤上黑麦草生理生化的影响[J]. 江苏农业科学,2017,45(13):196-200.
[12]邵国胜. 水稻镉耐性和积累的基因型差异与机理研究[D]. 杭州:浙江大学,2005.
[13]Kochian L V,Pence N S,Letham D L D,et al. Mechanisms of metal resistance in plants:aluminum and heavy metals[J]. Plant and Soil,2002,247(1):109-119.
[14]王志香. 重金属胁迫对三种木本植物影响的研究[D]. 北京:中国林业科学研究院,2007.
[15]Mench M,Morel J L,Guckert A,et al. Metal-binding with root exudates of low-molecular weight[J]. Journal of Soil Science,1988,39(4):521-527.
[16]Mench M,Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L.,Nicotiana tabacum L. and Nicotiana rustica L.[J]. Plant and Soil,1991,132(2):187-196.
[17]Xue H B,Shi T,Wang F F,et al. Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method[J]. Horticulture Research,2017,4:17053.
[18]曹鑫. 小麦TaTAC1基因同源克隆及表达分析[D]. 雅安:四川农业大学,2016.
[19]陶吉寒,招雪晴,苑兆和,等. 石榴DFR基因的同源克隆及分析[J]. 江苏农业科学,2013,41(4):22-24.
[20]Arenhart S, Silva J V Jr,Flores E F,et al. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones[J]. Brazilian Journal of Microbiology,2016,47(4):993-999.
[21]王翠. 马铃薯对镉、铅胁迫响应与富集的基因型差异[D]. 雅安:四川农业大学,2010.
[22]闫华超,高岚,李桂兰. 分子标记技术的发展及应用[J]. 生物学通报,2006,41(2):17-19.
[23]谭孟君,肖层林. 分子标记在杂交水稻种子纯度鉴定中的应用[J]. 作物研究,2006,20(增刊1):409-412.
[24]石鹏. TN DH群体高密度遗传图谱构建及其控制重要农艺性状QTL的再定位[D]. 武汉:华中农业大学,2013.
[25]曾庆力,蒋洪蔚,刘春燕,等. 利用高世代回交群体对大豆小粒性状的基因型分析及QTL定位[J]. 中国油料作物学报,2012,34(5):473-477.
[26]席章营. 作物次级作图群体的研究进展[C]//2004全国玉米种质扩增、改良、创新与分子育种学术会议论文集.北京, 2004.
[27]Smith L M,Fung S,Hunkapiller M W,et al. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus:synthesis of fluorescent DNA primers for use in DNA sequence analysis[J]. Nucleic Acids Research,1985,13(7):2399-2412.
[28]王晓梅,杨秀荣. DNA分子标记研究进展[J]. 天津农学院学报,2000,7(1):21-24.
[29]张小珍,尤崇革. 下一代基因测序技术新进展[J]. 兰州大学学报(医学版),2016,42(3):73-80.
[30]朱大强,李存,陈斌,等. 四种常用高通量测序拼接软件的应用比较[J]. 生物信息学,2011,9(2):106-112.
[31]温永平,侯强川,张和平. 自然发酵酸马奶对人体肠道菌群的影响——基于PacBio SMRT测序技术[J]. 中国乳品工业,2017,45(2):4-7.
[32]李春烨,丁国华,刘保东. 重金属影响植物细胞超微结构和功能的研究进展[J]. 中国农学通报,2013(18):114-118.
[33]Lagriffoul A,Mocquot B,Mench M,et al. Cadmium toxicity effects on growth,mineral and chlorophyll contents,and activities of stress related enzymesin young maize plants(Zea mays L.)[J]. Plant and Soil,1998,200(2):241-250.
[34]江行玉,赵可夫. 植物重金属伤害及其抗性机理[J]. 应用与环境生物学报,2001,7(1):92-99.
[35]Ryan P R,Delhaize E,Randall P J. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots[J]. Planta,1995,196(1):103-110.
[36]Ryan P R,Delhaize E,Jones D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52(1):527-560.
[37]Delhaize E,Craig S,Beaton C D,et al. Aluminum tolerance in wheat (Triticum-aestivum L) I. uptake and distribution of aluminum in root apices[J]. Plant Physiology,1993,103(3):685-693.
[38]Ma Z,Miyasaka S C. Oxalate exudation by taro in response to Al[J]. Plant Physiology,1998,118(3):861-865.
[39]Pellet D M,Grunes D L,Kochian L V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.)[J]. Planta,1995,196(4):788-795.
[40]Zheng S J,Ma J F,Matsumoto H. High aluminum resistance in buckwheat Ⅰ. Al-induced specific secretion of oxalic acid from root tips[J]. Plant Physiology,1998,117(3):745-751.
[41]Papernik L A,Bethea A S,Singleton T E,et al. Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat[J]. Planta,2001,212(5/6):829-834.
[42]Pellet D M,Papernik L A,Kochian L V. Multiple aluminum-resistance mechanisms in wheat(roles of root apical phosphate and malate exudation)[J]. Plant Physiology,1996,112(2):591-597.
[43]Akeson M A,Munns D N. Lipid bilayer permeation by neutral aluminum citrate and by three alpha-hydroxy carboxylic acids[J]. Biochimica et Biophysica Acta,1989,984(2):200-206.
[44]Shi B,Haug A. Aluminum uptake by neuroblastoma cells[J]. Journal of Neurochemistry,1990,55(2):551-558.
[45]Zhang W H,Ryan P R,Tyerman S D. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots[J]. Plant Physiology,2001,125(3):1459-1472.
[46]Nishizono H,Ichikawa H,Suziki S,et al. The role of the root cell wall in heavy metal tolerance of Athyrium yokoscense[J]. Plant and Soil,1987,101(1):15-20.
[47]Malone C,Koeppe D E,Miller R J. Localization of lead accumulated by corn plants[J]. Plant Physiology,1974,53:388-394.
[48]Kim S Y. Recent advances in ABA signaling[J]. Journal of Plant Biology,2007,50(2):117-121.
[49]金晶. 玉米逆境响应相关基因ZmUBP的功能鉴定与WRKY基因家族进化分析[D]. 合肥:安徽农业大学,2016.
[50]潘妍. 柽柳Lea基因抗重金属功能及与eIF5A共转化山新杨的研究[D]. 哈尔滨:东北林业大学,2010.
[51]唐东民,伍钧,唐勇,等. 重金属胁迫对植物的毒害及其抗性机理研究进展[J]. 四川环境,2008,27(5):79-83.
[52]刘大丽. 谷胱甘肽合成相关酶在重金属污染生物修复中的分子机制及比较研究[D]. 哈尔滨:东北林业大学,2013.
[53]范兆乾. AtATM3CYP2E1基因增强转基因紫花苜蓿抗重金属和有机物能力研究[D]. 青岛:青岛科技大学,2013.

相似文献/References:

[1]蒯广东,李轶,方晓航,等.硫氧化菌生物淋滤修复重金属污染研究进展[J].江苏农业科学,2013,41(05):335.
 Kuai Guangdong,et al.Research progress on heavy metal pollution restoring by bioleaching of sulfur-oxidizing bacteria[J].Jiangsu Agricultural Sciences,2013,41(10):335.
[2]赖颖,赵锦慧,杨同文,等.发酵性结合酵母菌对重金属吸附能力的研究[J].江苏农业科学,2014,42(11):398.
 Lai Ying,et al(98).Study on adsorption capacity of fermentation of yeast to heavy metals[J].Jiangsu Agricultural Sciences,2014,42(10):398.
[3]吴少飞,丁竹红,胡忻,等.EDTA及其与柠檬酸交替对污染水稻土壤重金属元素的分步连续提取研究[J].江苏农业科学,2014,42(11):369.
 Wu Shaofei,et al(9).Study on sequential extraction of heavy metal from contaminated paddy soil using EDTA and citric acid[J].Jiangsu Agricultural Sciences,2014,42(10):369.
[4]李洋,游少鸿,林子雨,等.菖蒲对5种重金属富集能力的比较[J].江苏农业科学,2014,42(11):383.
 Li Yang,et al(8).Comparative study on enrichment capacity of calamus to five kinds of heavy metals[J].Jiangsu Agricultural Sciences,2014,42(10):383.
[5]周秦,黄剑林.ICP-MS法与石墨炉原子吸收法测定水中重金属含量的比较[J].江苏农业科学,2013,41(06):283.
 Zhou Qin,et al.Comparison of ICP-MS method and graphite furnace atomic absorption spectrometry in determination of heavy metals contents in water[J].Jiangsu Agricultural Sciences,2013,41(10):283.
[6]李恒,龙柱,冯群策.废纸脱墨污泥蚯蚓生物处理效应[J].江苏农业科学,2014,42(09):358.
 Li Heng,et al.Biological treatment effect of waste paper deinking sludge by earthworm[J].Jiangsu Agricultural Sciences,2014,42(10):358.
[7]刘贵巧,王永霞,王建明,等.4种食用菌中重金属含量及食用安全评价[J].江苏农业科学,2014,42(09):268.
 Liu Guiqiao,et al.Heavy metal contents and food safety assessment of 4 kinds of edible fungi[J].Jiangsu Agricultural Sciences,2014,42(10):268.
[8]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(10):362.
[9]邹烨燔,李勇,赵志忠,等.东寨港红树林沉积物重金属的垂向分异及污染评价[J].江苏农业科学,2014,42(08):327.
 Zou Yefan,et al.Vertical distribution and pollution assessment of heavy metals in sediment of Dongzhai Port mangroves[J].Jiangsu Agricultural Sciences,2014,42(10):327.
[10]牟新利,郭佳,刘少达,等.三峡库区农林土壤重金属形态分布与污染评价[J].江苏农业科学,2013,41(09):314.
 Mou Xinli,et al.Distribution of heave metals and pollution assessment of agriculture and forest soils in Three Gorges Reservoir Area[J].Jiangsu Agricultural Sciences,2013,41(10):314.
[11]杨瑞卿,肖扬,申晨.采煤塌陷区土壤重金属污染及植物吸收富集特征[J].江苏农业科学,2018,46(20):291.
 Yang Ruiqing,et al.Heavy metal pollution and plant absorption and enrichment characteristics in coal mining subsidence area[J].Jiangsu Agricultural Sciences,2018,46(10):291.
[12]陈镔,谭淑端,董方旭,等.重金属对植物的毒害及植物对其毒害的解毒机制[J].江苏农业科学,2019,47(04):34.
 Chen Bin,et al.Toxic effects of heavy metals on plants and detoxification mechanism of plants[J].Jiangsu Agricultural Sciences,2019,47(10):34.

备注/Memo

备注/Memo:
收稿日期:2017-11-01
基金项目:国家自然科学基金(编号:U1612442-6-2);贵州省发改委项目(编号:黔发改高技[2017]950号)。
作者简介:符东顺(1992—),男,海南万宁人,硕士研究生,主要从事环境污染与修复技术研究。E-mail:915699030@qq.com。
通信作者:何腾兵,教授,硕士生导师,主要从事土壤学、环境科学的教学与科研工作。Tel:(0851)88293209;E-mail:hetengbing@163.com。
更新日期/Last Update: 2018-05-20