[1]吴海华,方宪法,杨炳南. 国内外农业装备技术发展趋势及进展[J]. 农业工程,2013,3(6):20-23.
[2]李文勇,李明,陈梅香,等. 基于机器视觉的作物多姿态害虫特征提取与分类方法[J]. 农业工程学报,2014,30(14):154-162.
[3]陈梅香,杨信延,石宝才,等. 害虫自动识别与计数技术研究进展与展望[J]. 环境昆虫学报,2015,37(1):176-183.
[4]Belongie S,Malik J,Puzicha J. Shape matching and object recognition using shape contexts[J]. Pattern Analysis and Machine Intelligence,2002,24(4):509-522.
[5]史庆才,李向阳,陈志伟,等. 茶园假眼小绿叶蝉的防控技术研究进展[J]. 农学学报,2015,5(1):20-24.
[6]张红涛,毛罕平,邱道尹. 储粮害虫图像识别中的特征提取[J]. 农业工程学报,2009,25(2):126-130.
[7]Camargo A,Smith J S. An image-processing based algorithm to automatically identify plant disease visual symptoms[J]. Biosystems Engineering,2009,102(1):9-21.
[8]温长吉,王生生,于合龙,等. 基于改进蜂群算法优化神经网络的玉米病害图像分割[J]. 农业工程学报,2013,29(13):142-149.
[9]关海鸥,许少华,谭峰. 基于T-S模型的模糊神经网络在植物病害图像分割中的应用[J]. 中国农业大学学报,2011,16(3):145-149.
[10]Oberti R,Marchi M,Tirelli P,et al. Automatic detection of powdery mildew on grapevine leaves by image analusis:optimal view angle range to increase the sensitivity[J]. Computers and Electronics in Agriculture,2014,104:1-8.
[11]朱林,赵健,冯全,等. 基于LBP滤波和ACWE的葡萄病害图像分割方法[J]. 中国农机化学报,2014,35(6):99-104.
[12]田杰,韩冬,胡秋霞,等. 基于PCA和高斯混合模型的小麦病害彩色图像分割[J]. 农业机械学报,2014,45(7):267-271.
[13]杨国国,鲍一丹,刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报,2017,33(6):156-162.
[14]Otsu N. A threshold selection method from gray-level histogram[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[15]张芳,王璐,付立思,等. 复杂背景下黄瓜病害叶片的分割方法研究[J]. 浙江农业学报,2014,26(5):1346-1355.
[16]韩青松. 基于Otsu算法的遥感图像阈值分割[D]. 乌鲁木齐:新疆大学,2011.
[17]张善文,张云龙,尚怡君. 一种基于Otsu算法的植物病害叶片图像分割方法[J]. 江苏农业科学,2014,42(4):337-339.
[18]彭红星,邹湘军,陈丽娟,等. 基于双次Otsu算法的野外荔枝多类色彩目标快速识别[J]. 农业机械学报,2014,45(4):61-68.
[19]龚立维. 基于Com VI和双阈值OTSU算法的农作物图像识别[J]. 排灌机械工程学报,2014,32(4):363-368.
[20]Bai X D,Cao Z G,Wang Y,et al. Crop segmentation from images by morphology modeling in the CIE L*a*b color space[J]. Computers and Electronics in Agriculture,2013,99(7):21-34.
[21]杨立军,封生霞,张雪霞. 黄瓜靶斑病的发生规律及综合防治措施[J]. 现代农业科技,2012(22):136.
[22]韩小爽,高苇,傅俊范,等. 黄瓜棒孢叶斑病的诊断与防治[J]. 中国蔬菜,2011(9):20-21.
[23]吴娜,李淼,陈晟,等. 基于融合多特征图切割的作物病害图像自动分割[J]. 农业工程学报,2014,30(17):212-219.
[24]Cheng M M,Mitra N J,Huang X,et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):569-582.
[1]朱家骥,朱伟兴.基于星状骨架模型的猪步态分析[J].江苏农业科学,2015,43(12):453.
Zhu Jiaji,et al.Analysis of pigs gaits based on star shaped frame model[J].Jiangsu Agricultural Sciences,2015,43(18):453.
[2]陈桂珍,龚声蓉.计算机视觉及模式识别技术在农业生产领域的应用[J].江苏农业科学,2015,43(08):409.
Chen Guizhen,et al.Application of computer vision and pattern recognition in agricultural production field[J].Jiangsu Agricultural Sciences,2015,43(18):409.
[3]劳东青,陈立平,邬欢欢,等.基于计算机视觉的枣叶含水率估算模型[J].江苏农业科学,2015,43(04):384.
Lao Dongqing,et al.Study on jujube leaf water content estimation model based on computer vision[J].Jiangsu Agricultural Sciences,2015,43(18):384.
[4]王爱新,李春友,张喆.基于计算机视觉的农业图像害虫定位检测算法[J].江苏农业科学,2016,44(07):361.
Wang Aixin,et al.Agricultural image pest location detection algorithm based on computer vision[J].Jiangsu Agricultural Sciences,2016,44(18):361.
[5]祁卫宇,王传宇,郭新宇.基于计算机视觉的植物行为感知研究综述[J].江苏农业科学,2017,45(06):20.
Qi Weiyu,et al.Study on plant behavior perception based on computer vision: a review[J].Jiangsu Agricultural Sciences,2017,45(18):20.
[6]邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160.
Xing Zhizhong,et al.Detection of egg freshness based on computer vision detection and neural network[J].Jiangsu Agricultural Sciences,2017,45(18):160.
[7]陈彩文,杜永贵,周超,等.基于支持向量机的鱼群摄食行为识别技术[J].江苏农业科学,2018,46(07):226.
Chen Caiwen,et al.Study on fish feeding behavior recognition technology based on support vector machine[J].Jiangsu Agricultural Sciences,2018,46(18):226.
[8]童阳,艾施荣,吴瑞梅,等.茶叶外形感官品质的计算机视觉分级研究[J].江苏农业科学,2019,47(05):170.
Tong Yang,et al.Sensory evaluation of tea appearance using computer vision classification[J].Jiangsu Agricultural Sciences,2019,47(18):170.
[9]张重阳,陈明.基于计算机视觉的鱼类摄食行为研究现状及展望[J].江苏农业科学,2020,48(24):31.
Zhang Chongyang,et al.Research status and outlook of fish feeding behavior based on computer vision[J].Jiangsu Agricultural Sciences,2020,48(18):31.
[10]胡玲艳,许巍,秦山,等.基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法[J].江苏农业科学,2023,51(1):195.
Hu Lingyan??et al.Image segmentation of key feature regions of European sweet cherry phenotype based on time-sharing overlap algorithm[J].Jiangsu Agricultural Sciences,2023,51(18):195.