[1]Singh R,Singh S,Parihar P,et al. Arsenic contamination,consequences and remediation techniques:a review[J]. Ecotoxicology and Environmental Safety,2015,112:247-270.
[2]Wang J J,Zeng X B,Zhang H,et al. Effect of exogenous phosphate on the lability and phytoavailability of arsenic in soils[J]. Chemosphere,2018,196:540-547.
[3]Sarkar A,Paul B. The global menace of arsenic and its conventional remediation - A critical review[J]. Chemosphere,2016,158:37-49.
[4]Allaway W H. Agronomic controls over the environmental cycling of trace elements[J]. Advances in Agronomy,1968,20:235-274.
[5]Stafilov T,ajn R,Pan c ˇ evski Z,et al. Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia[J]. Journal of Hazard Mater,2010,175(1/2/3):896-914.
[6]魏复盛,陈静生,吴燕玉,等. 中国土壤环境背景值研究[J]. 环境科学,1991(4):12-19.
[7]Miretzky P,Cirelli A F. Remediation of arsenic-contaminated soils by Iron amendments:a review[J]. Critical Reviews in Environmental Science and Technology,2010,40(2):93-115.
[8]Strawn D G,Rigby A C,Baker L L,et al. Biochar soil amendment effects on arsenic availability to mountain brome (Bromus marginatus)[J]. Journal of Environmental Quality,2015,44(4):1315-1320.
[9]King D J,Doronila A I,Feenstra C,et al. Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species:growth,arsenic uptake and availability after five years[J]. Science of the Total Environment,2008,406(1/2):35-42.
[10]Su S,Zeng X,Bai L,et al. Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth[J]. Chemosphere,2017,175:497-504.
[11]Im J,Yang K,Jho E H,et al. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties[J]. Chemosphere,2015,138:253-258.
[12]Elghdalgren K,Arwidsson Z,Camdzija A A,et al. Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site:changes in concentration and toxicity[J]. Journal of Hazardous Materials,2009,172(2/3):1033-1040.
[13]Xu X Y,Mcgrath S P,Meharg A A,et al. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environ Sci Technol,2008,42(15):5574-5579.
[14]Talukder A S M H M,Meisner C A,Sarkar M A R,et al. Effect of water management,arsenic and phosphorus levels on rice in a high-arsenic soil-water system:Ⅱ. Arsenic uptake[J]. Ecotoxicology and Environmental Safety,2012,80:145-151.
[15]Anawar H M,Rengel Z,Damon P,et al. Arsenic-phosphorus interactions in the soil-plant-microbe system:dynamics of uptake,suppression and toxicity to plants[J]. Environmental Pollution,2018:1003-1012.
[16]Jiang W,Hou Q,Yang Z,et al. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content[J]. Environmental Pollution,2014,188:159-165.
[17]Martin T A,Ruby M V. In situ remediation of arsenic in contaminated soils[J]. Remediation Journal,2003,14(1):21-32.
[18]Codling E E,Dao T H. Short-term effect of lime,phosphorus,and iron amendments on water-extractable lead and arsenic in orchard soils[J]. Communications in Soil Science & Plant Analysis,2007,38(7):903-919.
[19]Yan X L,Zhang M,Liao X Y,et al. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.[J]. Chemosphere,2012,88(2):240-244.
[20]Madeira A C,de Varennes A,Abreu M M,et al. Tomato and parsley growth,arsenic uptake and translocation in a contaminated amended soil[J]. Journal of Geochemical Exploration,2012,123:114-121.
[21]Peryea F J. Phosphate-induced release of arsenic from soils contaminated with lead arsenate[J]. Soil Science Society of America Journal,1991,55(5):1301-1306.
[22]李季,黄益宗,保琼莉,等. 几种改良剂对矿区土壤中As化学形态和生物可给性的影响[J]. 环境化学,2015,34(12):2198-2203.
[23]Bolan N,Mahimairaja S,Kunhikrishnan A A,et al. Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability[J]. Science of the Total Environment,2013,463(5):1154-1162.
[24]Han Y H,Yang G M,Fu J W,et al. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata:impact of arsenic and phosphate rock[J]. Chemosphere,2016,149:366-372.
[25]Niazi N K,Bibi I,Fatimah A,et al. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea:morphological and physiological response[J]. International Journal of Phytoremediation,2017,19(7):670.
[26]Mandal A,Purakayastha T J,Patra A K,et al. Arsenic phytoextraction by Pteris vittata improves microbial properties in contaminated soil under various phosphate fertilizations[J]. Applied Geochemistry,2018,88:258-266.
[27]Cao X,Ma L Q,Shiralipour A. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator,Pteris vittata L.[J]. Environmental Pollution,2003,126(2):157-167.
[28]Xu X,Chen C,Wang P,et al. Control of arsenic mobilization in paddy soils by manganese and iron oxides[J]. Environmental Pollution,2017,231(Pt 1):37-47.
[29]林志灵. 钝化剂和营养调控对高砷土壤中作物吸收砷的影响[D]. 长沙:湖南农业大学,2013.
[30]孙媛媛. 几种钝化剂对土壤砷生物有效性的影响与机理[D]. 北京:中国农业大学,2015.
[31]Yu H Y,Wang X,Li F,et al. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice[J]. Environmental Pollution,2017,224:136-147.
[32]García-Sanchez A,Alvarez-Ayuso E,Rodriguez-Martin F. Sorption of As(V) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils[J]. Clay Minerals,2002,37(1):187-194.
[33]Lin Z,Puls R W. Potential indicators for the assessment of arsenic natural attenuation in the subsurface[J]. Advances in Environmental Research,2003,7(4):825-834.
[34]Doi M,Warren G,Hodson M E. A preliminary investigation into the use of ochre as a remedial amendment in arsenic-contaminated soils[J]. Applied Geochemistry,2005,20(12):2207-2216.
[35]Aguilar J,Dorronsoro C,Fernández E,et al. Remediation of As-contaminated soils in the Guadiamar River Basin (SW,Spain)[J]. Water Air Soil Pollution,2007,180:109-118.
[36]吴宝麟. 铅镉砷复合污染土壤钝化修复研究[D]. 长沙:中南大学,2014.
[37]文武. 土壤砷的化学固定修复技术研究[D]. 长沙:中南林业科技大学,2012.
[38]黄增,黄红铭,王琳,等. 砷污染土壤修复中钝化剂的筛选及其工艺条件优化研究[J]. 应用化工,2017,46(8):1557-1560.
[39]Gemeinhardt C,Müller S,Weigand H,et al. Chemical immobilisation of arsenic in contaminated soils using iron(Ⅱ) sulphate-advantages and pitfalls[J]. Water Air & Soil Pollution:Focus,2006,6(3/4):281-297.
[40]Warren G P,Alloway B J. Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil[J]. Journal of Environmental Quality,2003,32(3):767-772.
[41]汤家喜,梁成华,杜立宇,等. 复合污染土壤中砷和镉的原位固定效果研究[J]. 环境污染与防治,2011,33(2):56-59.
[42]Zou L A,Zhang S,Duan D C,et al. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil[J]. Environmental Science and Pollution Research,2018,25(9):8888-8902.
[43]Yan X L,Lin L Y,Liao X Y,et al. Arsenic stabilization by zero-valent iron,bauxite residue,and zeolite at a contaminated site planting Panax notoginseng[J]. Chemosphere,2013,93(4):661-667.
[44]Qiao J T,Liu T X,Wang X Q,et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere,2018,195:260-271.
[45]Ibrahim M,Khan S,Hao X,et al. Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil[J]. International Journal of Environmental Science and Technology,2016,13:2467-2474.
[46]Namgay T,Singh B,Singh B P. Influence of biochar application to soil on the availability of As,Cd,Cu,Pb,and Zn to maize (Zea mays L.)[J]. Australian Journal of Soil Research,2010,48(7):638-647.
[47]Beiyuan J,Awad Y M,Beckers F,et al. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions[J]. Chemosphere,2017,178:110-118.
[48]Wu C,Cui M Q,Xue S G,et al. Remediation of arsenic-contaminated paddy soil by iron-modified biochar[J]. Environmental Science and Pollution Research,2018,25:20792-20801.
[49]Zou Q,An W H,Wu C,et al. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition[J]. Environmental Chemistry Letters,2018,16(2):615-622.
[50]刘小诗. 砷镉超标农田钝化剂的筛选及调控效应研究[D]. 北京:中国农业科学院,2015.
[51]马瑞. 不同品种及农艺措施对水稻砷吸收、化学形态及毒性的影响[D]. 南京:南京农业大学,2015.
[52]卢美献. 不同固定剂及其配比对土壤中镉砷钝化修复效果研究[D]. 南宁:广西大学,2016.
[53]Arco-Lázaro E,Pardo T,Clemente R,et al. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water:Effects of Fe-rich amendments and organic and inorganic fertilisers[J]. Journal of Environmental Management,2018,209:262-272.
[54]Mccann C M,Peacock C L,Hudson-Edwards K A,et al. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil[J]. Journal of Hazardous Materials,2017,342:724-731.
[55]Lewińska K,Karczewska A,Siepak M,et al. Potential of Fe-Mn wastes produced by a water treatment plant for arsenic immobilization in contaminated soils[J]. Journal of Geochemical Exploration,2016,184:226-231.
[56]Manning B A,Fendorf S E,Bostick B,et al. Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite[J]. Environmental Science & Technology,2002,36(5):976-981.
[57]Caporale A G,Adamo P,Azam S M G G,et al. May humic acids or mineral fertilisation mitigate arsenic mobility and availability to carrot plants (Daucus carota L.) in a volcanic soil polluted by As from irrigation water?[J]. Chemosphere,2017,193:464-471.
[58]Moon D H,Dermatas D,Menounou N. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils[J]. Science of the Total Environment,2004,330(1/2/3):171-185.
[59]Mendonca A A,Galva O T C,Lima D C,et al. Stabilization of arsenic-bearing sludges using lime[J]. Journal of Materials in Civil Engineering,2006,18(2):135-139.
[60]何菁. 土壤砷钝化剂的筛选及其调控效应[D]. 广州:广东工业大学,2014.
[61]万祥. 湖南某矿区土壤砷污染特征及化学固定修复实验研究[D]. 北京:北京化工大学,2017.
[62]Vithanage M,Dabrowska B B,Mukherjee A B,et al. Arsenic uptake by plants and possible phytoremediation applications:a brief overview[J]. Environmental Chemistry Letters,2012,10(3):217-224.
[63]Komárek M,Vanek A,Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides-a review[J]. Environmental Pollution,2013,172:9-22.
[64]Pigna,M.,A.G. Caporale,L. Cavalca,et al. Arsenic in the soil environment:mobility and phytoavailability[J]. Environmental Engineering Science,2015,32(7):150505074828006.
[65]Suda A,Makino T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium:a review[J]. Geoderma,2016,270:68-75.
[66]Bissen M,Frimmel F H. Arsenic:a review. - Part 1:Occurrence,toxicity,speciation,mobility[J]. Acta Hydrochimica et Hydrobiologica,2003,31(1):9-18.
[67]Dixit S,Hering J G. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals:implications for arsenic mobility[J]. Environmental Science & Technology,2003,37(18):4182-4189.
[68]Raven K P,Jain A,Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:kinetics,equilibrium,and adsorption envelopes[J]. Environmental Science & Technology,1998,32(3):344-349.
[69]Davranche M,Bollinger J C,Bril H. Effect of reductive conditions on metal mobility from wasteland solids:an example from the Mortagne-du-Nord site (France)[J]. Applied Geochemistry,2003,18(3):383-394.
[70]Kim J Y,Davis A P,Kim K W. Stabilization of available arsenic in highly contaminated mine tailings using iron[J]. Environmental Science & Technology,2003,37(1):189-195.
[71]Martínez C E,McBride M B. Coprecipitates of Cd,Cu,Pb and Zn in iron pxides:solid phase transformation and metal solubility after aging and thermal treatment[J]. Clays & Clay Minerals,1998,46(5):537-545.
[72]Drahota P,Filippi M. Secondary arsenic minerals in the environment:a review[J]. Environment International,2009,35(8):1243-1255.
[73]Chiu V Q,Hering J G . Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species[J]. Environmental Science & Technology,2000,34(10):2029-2034.
[74]Kumpiene J,Lagerkvist A,Maurice C. Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments:a review[J]. Waste Management,2008,28(1):215-225.
[75]Sun X,Doner H E. Adsorption and oxidation of arsenite on goethite[J]. Soil Science,1998,163(4):278-287.
[76]张敏,赵全利,王钊,等. 外源硅和有机质对污染土壤中小麦砷、铅累积的影响[J]. 江苏农业科学,2017,45(24):285-288.
[77]杨金红,郑玉彬,刘芳. 芦苇对砷的吸收运转及对砷污染土壤的修复效果[J]. 江苏农业科学,2017,45(19):299-302.
[1]蒯广东,李轶,方晓航,等.硫氧化菌生物淋滤修复重金属污染研究进展[J].江苏农业科学,2013,41(05):335.
Kuai Guangdong,et al.Research progress on heavy metal pollution restoring by bioleaching of sulfur-oxidizing bacteria[J].Jiangsu Agricultural Sciences,2013,41(22):335.
[2]赖颖,赵锦慧,杨同文,等.发酵性结合酵母菌对重金属吸附能力的研究[J].江苏农业科学,2014,42(11):398.
Lai Ying,et al(98).Study on adsorption capacity of fermentation of yeast to heavy metals[J].Jiangsu Agricultural Sciences,2014,42(22):398.
[3]吴少飞,丁竹红,胡忻,等.EDTA及其与柠檬酸交替对污染水稻土壤重金属元素的分步连续提取研究[J].江苏农业科学,2014,42(11):369.
Wu Shaofei,et al(9).Study on sequential extraction of heavy metal from contaminated paddy soil using EDTA and citric acid[J].Jiangsu Agricultural Sciences,2014,42(22):369.
[4]李洋,游少鸿,林子雨,等.菖蒲对5种重金属富集能力的比较[J].江苏农业科学,2014,42(11):383.
Li Yang,et al(8).Comparative study on enrichment capacity of calamus to five kinds of heavy metals[J].Jiangsu Agricultural Sciences,2014,42(22):383.
[5]周秦,黄剑林.ICP-MS法与石墨炉原子吸收法测定水中重金属含量的比较[J].江苏农业科学,2013,41(06):283.
Zhou Qin,et al.Comparison of ICP-MS method and graphite furnace atomic absorption spectrometry in determination of heavy metals contents in water[J].Jiangsu Agricultural Sciences,2013,41(22):283.
[6]李恒,龙柱,冯群策.废纸脱墨污泥蚯蚓生物处理效应[J].江苏农业科学,2014,42(09):358.
Li Heng,et al.Biological treatment effect of waste paper deinking sludge by earthworm[J].Jiangsu Agricultural Sciences,2014,42(22):358.
[7]刘贵巧,王永霞,王建明,等.4种食用菌中重金属含量及食用安全评价[J].江苏农业科学,2014,42(09):268.
Liu Guiqiao,et al.Heavy metal contents and food safety assessment of 4 kinds of edible fungi[J].Jiangsu Agricultural Sciences,2014,42(22):268.
[8]曹美,朱忠.微波消解-石墨炉原子吸收光谱法测定烟用水基胶中铅、砷的含量[J].江苏农业科学,2013,41(08):301.
Cao Mei,et al.Determination of lead and arsenic contents in water-based adhesive for cigarette by microwave digestion-graphite furnace atomic absorption spectrometry[J].Jiangsu Agricultural Sciences,2013,41(22):301.
[9]邹烨燔,李勇,赵志忠,等.东寨港红树林沉积物重金属的垂向分异及污染评价[J].江苏农业科学,2014,42(08):327.
Zou Yefan,et al.Vertical distribution and pollution assessment of heavy metals in sediment of Dongzhai Port mangroves[J].Jiangsu Agricultural Sciences,2014,42(22):327.
[10]牟新利,郭佳,刘少达,等.三峡库区农林土壤重金属形态分布与污染评价[J].江苏农业科学,2013,41(09):314.
Mou Xinli,et al.Distribution of heave metals and pollution assessment of agriculture and forest soils in Three Gorges Reservoir Area[J].Jiangsu Agricultural Sciences,2013,41(22):314.
[11]丁浩男,潘荣庆,吕浩能,等.叶面施用有机硒、有机硅对水稻累积镉、砷的影响[J].江苏农业科学,2023,51(14):215.
Ding Haonan,et al.Effects of foliar application of organic selenium and organic silicon on accumulation of cadmium and arsenic in rice[J].Jiangsu Agricultural Sciences,2023,51(22):215.