[1]农业部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京:中国农业出版社,2019.
[2]Cui Z H,Wu J F,Yu H. A review of the application of computer vision technology in aquaculture[J]. Marine Science Bulletin,2018,20(1): 53-66.
[3]段延娥,李道亮,李振波,等. 基于计算机视觉的水产动物视觉特征测量研究综述[J]. 农业工程学报,2015,31(15):1-11.
[4]王勇平,聂余满,谢成军,等. 基于机器视觉的养殖鱼群智能投饵系统设计与研究[J]. 仪表技术,2015(1):1-4.
[5]Chao Z,Xu D M,Kai L,et al. Intelligent feeding control methods in aquaculture with an emphasis on fish: a review[J]. Reviews in Aquaculture,2018,10(4): 975-993.
[6]Yousef A,Srivastava S,Liu X M. Automatic feeding control for dense aquaculture fish tanks[J]. IEEE Signal Processing Letters,2015,22(8): 1089-1093.
[7]李贤,范良忠,刘子毅,等. 基于计算机视觉的大菱鲆对背景色选择习性研究[J]. 农业工程学报,2012,28(10):189-193.
[8]张志强,牛智有,赵思明. 基于机器视觉技术的淡水鱼品种识别[J]. 农业工程学报,2011,27(11):388-392.
[9]宋君毅.基于图像处理的鱼群监测技术研究[D]. 天津:天津理工大学,2015.
[10]于欣,侯晓娇,卢焕达,等. 基于光流法与特征统计的鱼群异常行为检测[J]. 农业工程学报,2014,30(2):162-168.
[11]赵建,朱松明,叶章颖,等. 循环水养殖游泳型鱼类摄食活动强度评估方法研究[J]. 农业机械学报,2016,47(8):288-293.
[12]侯晓娇. 基于计算机视觉的鱼群行为检测与结构特征研究[D]. 太原:太原科技大学,2014.
[13]Zhang Y Y,Jian Z,Zhi Y H,et al. Behavioral characteristics and statistics-based imaging techniques in the assessment and optimization of tilapia feeding in a recirculating aquaculture system[J]. Transactions of the ASABE,2016,59(1): 345-355.
[14]宋伟,张力,邓亚航. 基于背景差分法的模型改进方法研究[J]. 传感器与微系统,2017,36(10):67-69.
[15]Kato S,Tamada K,Shimada Y,et al. A quantification of goldfish behavior by an image processing system[J]. Behavioural Brain Research,1996,80(1/2): 51-55.
[16]张胜茂,赵申,张衡,等. 基于视频分析的鱼雷运动目标提取[J]. 渔业信息与战略,2017,32(1):44-50.
[17]范良忠,刘鹰,余心杰,等. 基于计算机视觉技术的运动鱼检测算法[J]. 农业工程学报,2011,27(7):226-230.
[18]Liu Z Y,Li X,Fan L Z,et al. Measuring feeding activity of fish in RAS using computer vision[J]. Aquacultural Engineering,2014,60: 20-27.
[19]曾巧玲,文贡坚.运动目标跟踪综述[J]. 重庆理工大学学报(自然科学版),2016,30(7):103-111.
[20]Nair S S,Mon F A,Suthendran K. Under water fish species recognition[J]. International of Pure and Applied Mathematics,2018,118(7): 357-361.
[21]Zhou C,Lin K,Xu D M,et al. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture[J]. Computers and Electronics in Agriculture,2018,146(6): 114-124.
[22]Zhao J,Bao W J,Zhang F D,et al.Assessing appetite of the swimming fish based on spontaneous collective behaviors in a Recirculating aquaculture system[J]. Aquacultural Engineering. 2017,78:196-204.
[23]Qian Z M,Wang S H,Cheng X E,et al. An effective and robust method for tracking multiple fish in video image based on fish head detection[J]. BMC Bioinformatics,2016,17(1): 251.
[24]程淑红. 动态图像目标跟踪算法研究[D]. 秦皇岛:燕山大学,2011.
[25]郭超. 柔性鱼体目标检测与跟踪技术研究[D]. 哈尔滨:哈尔滨工业大学,2017.
[26]汤一平,刘森森,石兴民,等. 基于3D计算机视觉的鱼类行为分析研究[J]. 高技术通讯,2015,25(3):249-256.
[27]Pautsina A,Cisar P,Stys D,et al. Infrared reflection system for indoor 3D tracking of fish[J]. Aquacultural Engineering,2015,69: 7-17.
[28]Hassan S G,Hasan M,Li D L. Information fusion in aquaculture: a state-of the art review[J]. Frontiers of Agricultural Science and Engineering,2016,3(3): 206.
[29]贾成功,张学良,陈俊华,等. 基于鱼群摄食规律的投饵系统研究[J]. 机械工程师,2017(8):22-25,28.
[30]Klimley A P,Brown S T. Stereophotography for the field biologist: measurement of lengths and three-dimensional positions of free-swimming sharks[J]. Marine Biology,1983,74(2): 175-185.
[31]Torisawa S,Kadota M,Komeyama K,et al. A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna,Thunnus orientalis,cultured in a net cage[J]. Aquatic Living Resources,2011,24(2): 107-112.
[32]万鹏,潘海兵,龙长江,等. 基于机器视觉技术淡水鱼品种在线识别装置设计[J]. 食品与机械,2012,28(6):164-167.
[33]Lee D,Lee K,Kim S,et al. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm[J]. Journal of Food Science,2015,80(4): 729-733.
[34]胡利永,魏玉艳,郑堤,等. 基于机器视觉技术的智能投饵方法研究[J]. 热带海洋学报,2015,34(4):90-95.
[35]张志强,牛智有,赵思明,等. 基于机器视觉技术的淡水鱼质量分级[J]. 农业工程学报,2011,27(2):350-354.
[36]Alsmadi M K,Omar K B,Noah S A,et al. Fish recognition based on robust features extraction from size and shape measurements using neural network[J]. Journal of Computer Science,2010,6(10): 1059-1065.
[37]Huang T W,Hwang J N,Rose C S. Chute based automated fish length measurement and water drop detection[C]//IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). IEEE,2016.
[38]刘丽,赵凌君,郭承玉,等. 图像纹理分类方法研究进展和展望[J]. 自动化学报,2018,44(4):584-607.
[39]郭强,杨信廷,周超,等. 基于形状与纹理特征的鱼类摄食状态检测方法[J]. 上海海洋大学学报,2018,27(2):181-189.
[40]Ojala T,Pietikainen M,Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7): 971-987.
[41]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7): 674-693.
[42]陈彩文,杜永贵,周超,等. 基于支持向量机的鱼群摄食行为识别技术[J]. 江苏农业科学,2018,46(7):226-229.
[43]陈彩文,杜永贵,周超,等. 基于图像纹理特征的养殖鱼群摄食活动强度评估[J]. 农业工程学报,2017,33(5):232-237.
[44]Hu J,Li D L,Duan Q L,et al. A fuzzy C-Means clustering based algorithm to automatically segment fish disease visual symptoms[J]. Sensor Letters,2012,10(1/2): 190-197.
[45]Chomtip P,Pimprapai L,Waranat K,et al. Thai fish image recognition system[C]//Proceedings of International Joint Conference on Computer Science and Software Engineering.Bangkok,2012.
[46]张重阳,陈明,冯国富,等. 基于多特征融合与机器学习的鱼类摄食行为的检测[J]. 湖南农业大学学报(自然科学版),2019,45(1):97-102.
[47]Zion B,Alchanatis V,Ostrovsky V,et al. Ornamental fish mass estimation by image processing[M]. Bet Dagan:Agricultural Research Organization,2012.
[48]Hufschmied P,Fankhauser T,Pugovkin D. Automatic stress-free sorting of sturgeons inside culture tanks using image processing[J]. Journal of Applied Ichthyology,2011,27(2): 622-626.
[49]Viazzi S,Hoestenberghe S V,Goddeeris B M,et al. Automatic mass estimation of Jade perch Scortum barcoo by computer vision[J]. Aquacultural Engineering,2015,64: 42-48.
[50]Lines J A,Tillett R D,Ross L G,et al. An automatic image-based system for estimating the mass of free-swimming fish[J]. Computers and Electronics in Agriculture,2001,31(2): 151-168.
[51]徐建瑜,姜雄晖,刘鹰. 基于计算机视觉的鱼体色明暗程度量化方法[J]. 农机化研究,2006(6):140-142,152.
[52]Misimi E,Erikson U,Skavhaug A. Quality grading of Atlantic salmon (Salmo salar) by computer vision[J]. Journal of Food Science,2008,73(5): 211-217.
[53]Wallat G K,Luzuriaga D A,Balaban M O,et al. Analysis of skin color development in live goldfish using a color machine vision system[J]. North American Journal of Aquaculture,2002,64(1): 79-84.
[1]朱家骥,朱伟兴.基于星状骨架模型的猪步态分析[J].江苏农业科学,2015,43(12):453.
Zhu Jiaji,et al.Analysis of pigs gaits based on star shaped frame model[J].Jiangsu Agricultural Sciences,2015,43(24):453.
[2]陈桂珍,龚声蓉.计算机视觉及模式识别技术在农业生产领域的应用[J].江苏农业科学,2015,43(08):409.
Chen Guizhen,et al.Application of computer vision and pattern recognition in agricultural production field[J].Jiangsu Agricultural Sciences,2015,43(24):409.
[3]劳东青,陈立平,邬欢欢,等.基于计算机视觉的枣叶含水率估算模型[J].江苏农业科学,2015,43(04):384.
Lao Dongqing,et al.Study on jujube leaf water content estimation model based on computer vision[J].Jiangsu Agricultural Sciences,2015,43(24):384.
[4]王爱新,李春友,张喆.基于计算机视觉的农业图像害虫定位检测算法[J].江苏农业科学,2016,44(07):361.
Wang Aixin,et al.Agricultural image pest location detection algorithm based on computer vision[J].Jiangsu Agricultural Sciences,2016,44(24):361.
[5]祁卫宇,王传宇,郭新宇.基于计算机视觉的植物行为感知研究综述[J].江苏农业科学,2017,45(06):20.
Qi Weiyu,et al.Study on plant behavior perception based on computer vision: a review[J].Jiangsu Agricultural Sciences,2017,45(24):20.
[6]邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160.
Xing Zhizhong,et al.Detection of egg freshness based on computer vision detection and neural network[J].Jiangsu Agricultural Sciences,2017,45(24):160.
[7]陈彩文,杜永贵,周超,等.基于支持向量机的鱼群摄食行为识别技术[J].江苏农业科学,2018,46(07):226.
Chen Caiwen,et al.Study on fish feeding behavior recognition technology based on support vector machine[J].Jiangsu Agricultural Sciences,2018,46(24):226.
[8]刘祖鹏.基于优化PCNN模型的黄瓜叶片病斑提取方法[J].江苏农业科学,2018,46(18):216.
Liu Zupeng.A cucumber leaf lesion extraction method based on optimized PCNN mode[J].Jiangsu Agricultural Sciences,2018,46(24):216.
[9]童阳,艾施荣,吴瑞梅,等.茶叶外形感官品质的计算机视觉分级研究[J].江苏农业科学,2019,47(05):170.
Tong Yang,et al.Sensory evaluation of tea appearance using computer vision classification[J].Jiangsu Agricultural Sciences,2019,47(24):170.
[10]胡玲艳,许巍,秦山,等.基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法[J].江苏农业科学,2023,51(1):195.
Hu Lingyan??et al.Image segmentation of key feature regions of European sweet cherry phenotype based on time-sharing overlap algorithm[J].Jiangsu Agricultural Sciences,2023,51(24):195.