|本期目录/Table of Contents|

[1]张重阳,陈明.基于计算机视觉的鱼类摄食行为研究现状及展望[J].江苏农业科学,2020,48(24):31-36.
 Zhang Chongyang,et al.Research status and outlook of fish feeding behavior based on computer vision[J].Jiangsu Agricultural Sciences,2020,48(24):31-36.
点击复制

基于计算机视觉的鱼类摄食行为研究现状及展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第24期
页码:
31-36
栏目:
专论与综述
出版日期:
2020-12-30

文章信息/Info

Title:
Research status and outlook of fish feeding behavior based on computer vision
作者:
张重阳 陈明
上海海洋大学信息学院/农业农村部渔业信息重点实验室,上海 201306
Author(s):
Zhang Chongyanget al
关键词:
计算机视觉鱼类摄食特征提取目标跟踪水产养殖
Keywords:
-
分类号:
TP391.4
DOI:
-
文献标志码:
A
摘要:
随着工厂化循环水养殖业的不断发展,借助计算机视觉技术研究鱼类的摄食行为已逐渐成为鱼类行为学研究的热点课题。本文在对相关文献调研的基础上,根据视觉特性从动态和静态2个方面围绕目标检测、目标跟踪、尺寸测量、形状分析、质量估计、纹理分析和颜色判定等多个方面详细分析了计算机视觉在鱼类摄食行为研究方面的国内外研究现状;同时,分析了利用计算机视觉技术研究鱼类行为对精细化养殖带来的机遇和挑战,并给出了今后在高精度检测和活跃性等方面的研究趋势和发展方向。
Abstract:
-

参考文献/References:

[1]农业部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京:中国农业出版社,2019.
[2]Cui Z H,Wu J F,Yu H. A review of the application of computer vision technology in aquaculture[J]. Marine Science Bulletin,2018,20(1): 53-66.
[3]段延娥,李道亮,李振波,等. 基于计算机视觉的水产动物视觉特征测量研究综述[J]. 农业工程学报,2015,31(15):1-11.
[4]王勇平,聂余满,谢成军,等. 基于机器视觉的养殖鱼群智能投饵系统设计与研究[J]. 仪表技术,2015(1):1-4.
[5]Chao Z,Xu D M,Kai L,et al. Intelligent feeding control methods in aquaculture with an emphasis on fish: a review[J]. Reviews in Aquaculture,2018,10(4): 975-993.
[6]Yousef A,Srivastava S,Liu X M. Automatic feeding control for dense aquaculture fish tanks[J]. IEEE Signal Processing Letters,2015,22(8): 1089-1093.
[7]李贤,范良忠,刘子毅,等. 基于计算机视觉的大菱鲆对背景色选择习性研究[J]. 农业工程学报,2012,28(10):189-193.
[8]张志强,牛智有,赵思明. 基于机器视觉技术的淡水鱼品种识别[J]. 农业工程学报,2011,27(11):388-392.
[9]宋君毅.基于图像处理的鱼群监测技术研究[D]. 天津:天津理工大学,2015.
[10]于欣,侯晓娇,卢焕达,等. 基于光流法与特征统计的鱼群异常行为检测[J]. 农业工程学报,2014,30(2):162-168.
[11]赵建,朱松明,叶章颖,等. 循环水养殖游泳型鱼类摄食活动强度评估方法研究[J]. 农业机械学报,2016,47(8):288-293.
[12]侯晓娇. 基于计算机视觉的鱼群行为检测与结构特征研究[D]. 太原:太原科技大学,2014.
[13]Zhang Y Y,Jian Z,Zhi Y H,et al. Behavioral characteristics and statistics-based imaging techniques in the assessment and optimization of tilapia feeding in a recirculating aquaculture system[J]. Transactions of the ASABE,2016,59(1): 345-355.
[14]宋伟,张力,邓亚航. 基于背景差分法的模型改进方法研究[J]. 传感器与微系统,2017,36(10):67-69.
[15]Kato S,Tamada K,Shimada Y,et al. A quantification of goldfish behavior by an image processing system[J]. Behavioural Brain Research,1996,80(1/2): 51-55.
[16]张胜茂,赵申,张衡,等. 基于视频分析的鱼雷运动目标提取[J]. 渔业信息与战略,2017,32(1):44-50.
[17]范良忠,刘鹰,余心杰,等. 基于计算机视觉技术的运动鱼检测算法[J]. 农业工程学报,2011,27(7):226-230.
[18]Liu Z Y,Li X,Fan L Z,et al. Measuring feeding activity of fish in RAS using computer vision[J]. Aquacultural Engineering,2014,60: 20-27.
[19]曾巧玲,文贡坚.运动目标跟踪综述[J]. 重庆理工大学学报(自然科学版),2016,30(7):103-111.
[20]Nair S S,Mon F A,Suthendran K. Under water fish species recognition[J]. International of Pure and Applied Mathematics,2018,118(7): 357-361.
[21]Zhou C,Lin K,Xu D M,et al. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture[J]. Computers and Electronics in Agriculture,2018,146(6): 114-124.
[22]Zhao J,Bao W J,Zhang F D,et al.Assessing appetite of the swimming fish based on spontaneous collective behaviors in a Recirculating aquaculture system[J]. Aquacultural Engineering. 2017,78:196-204.
[23]Qian Z M,Wang S H,Cheng X E,et al. An effective and robust method for tracking multiple fish in video image based on fish head detection[J]. BMC Bioinformatics,2016,17(1): 251.
[24]程淑红. 动态图像目标跟踪算法研究[D]. 秦皇岛:燕山大学,2011.
[25]郭超. 柔性鱼体目标检测与跟踪技术研究[D]. 哈尔滨:哈尔滨工业大学,2017.
[26]汤一平,刘森森,石兴民,等. 基于3D计算机视觉的鱼类行为分析研究[J]. 高技术通讯,2015,25(3):249-256.
[27]Pautsina A,Cisar P,Stys D,et al. Infrared reflection system for indoor 3D tracking of fish[J]. Aquacultural Engineering,2015,69: 7-17.
[28]Hassan S G,Hasan M,Li D L. Information fusion in aquaculture: a state-of the art review[J]. Frontiers of Agricultural Science and Engineering,2016,3(3): 206.
[29]贾成功,张学良,陈俊华,等. 基于鱼群摄食规律的投饵系统研究[J]. 机械工程师,2017(8):22-25,28.
[30]Klimley A P,Brown S T. Stereophotography for the field biologist: measurement of lengths and three-dimensional positions of free-swimming sharks[J]. Marine Biology,1983,74(2): 175-185.
[31]Torisawa S,Kadota M,Komeyama K,et al. A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna,Thunnus orientalis,cultured in a net cage[J]. Aquatic Living Resources,2011,24(2): 107-112.
[32]万鹏,潘海兵,龙长江,等. 基于机器视觉技术淡水鱼品种在线识别装置设计[J]. 食品与机械,2012,28(6):164-167.
[33]Lee D,Lee K,Kim S,et al. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm[J]. Journal of Food Science,2015,80(4): 729-733.
[34]胡利永,魏玉艳,郑堤,等. 基于机器视觉技术的智能投饵方法研究[J]. 热带海洋学报,2015,34(4):90-95.
[35]张志强,牛智有,赵思明,等. 基于机器视觉技术的淡水鱼质量分级[J]. 农业工程学报,2011,27(2):350-354.
[36]Alsmadi M K,Omar K B,Noah S A,et al. Fish recognition based on robust features extraction from size and shape measurements using neural network[J]. Journal of Computer Science,2010,6(10): 1059-1065.
[37]Huang T W,Hwang J N,Rose C S. Chute based automated fish length measurement and water drop detection[C]//IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). IEEE,2016.
[38]刘丽,赵凌君,郭承玉,等. 图像纹理分类方法研究进展和展望[J]. 自动化学报,2018,44(4):584-607.
[39]郭强,杨信廷,周超,等. 基于形状与纹理特征的鱼类摄食状态检测方法[J]. 上海海洋大学学报,2018,27(2):181-189.
[40]Ojala T,Pietikainen M,Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7): 971-987.
[41]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7): 674-693.
[42]陈彩文,杜永贵,周超,等. 基于支持向量机的鱼群摄食行为识别技术[J]. 江苏农业科学,2018,46(7):226-229.
[43]陈彩文,杜永贵,周超,等. 基于图像纹理特征的养殖鱼群摄食活动强度评估[J]. 农业工程学报,2017,33(5):232-237.
[44]Hu J,Li D L,Duan Q L,et al. A fuzzy C-Means clustering based algorithm to automatically segment fish disease visual symptoms[J]. Sensor Letters,2012,10(1/2): 190-197.
[45]Chomtip P,Pimprapai L,Waranat K,et al. Thai fish image recognition system[C]//Proceedings of International Joint Conference on Computer Science and Software Engineering.Bangkok,2012.
[46]张重阳,陈明,冯国富,等. 基于多特征融合与机器学习的鱼类摄食行为的检测[J]. 湖南农业大学学报(自然科学版),2019,45(1):97-102.
[47]Zion B,Alchanatis V,Ostrovsky V,et al. Ornamental fish mass estimation by image processing[M]. Bet Dagan:Agricultural Research Organization,2012.
[48]Hufschmied P,Fankhauser T,Pugovkin D. Automatic stress-free sorting of sturgeons inside culture tanks using image processing[J]. Journal of Applied Ichthyology,2011,27(2): 622-626.
[49]Viazzi S,Hoestenberghe S V,Goddeeris B M,et al. Automatic mass estimation of Jade perch Scortum barcoo by computer vision[J]. Aquacultural Engineering,2015,64: 42-48.
[50]Lines J A,Tillett R D,Ross L G,et al. An automatic image-based system for estimating the mass of free-swimming fish[J]. Computers and Electronics in Agriculture,2001,31(2): 151-168.
[51]徐建瑜,姜雄晖,刘鹰. 基于计算机视觉的鱼体色明暗程度量化方法[J]. 农机化研究,2006(6):140-142,152.
[52]Misimi E,Erikson U,Skavhaug A. Quality grading of Atlantic salmon (Salmo salar) by computer vision[J]. Journal of Food Science,2008,73(5): 211-217.
[53]Wallat G K,Luzuriaga D A,Balaban M O,et al. Analysis of skin color development in live goldfish using a color machine vision system[J]. North American Journal of Aquaculture,2002,64(1): 79-84.

相似文献/References:

[1]朱家骥,朱伟兴.基于星状骨架模型的猪步态分析[J].江苏农业科学,2015,43(12):453.
 Zhu Jiaji,et al.Analysis of pigs gaits based on star shaped frame model[J].Jiangsu Agricultural Sciences,2015,43(24):453.
[2]陈桂珍,龚声蓉.计算机视觉及模式识别技术在农业生产领域的应用[J].江苏农业科学,2015,43(08):409.
 Chen Guizhen,et al.Application of computer vision and pattern recognition in agricultural production field[J].Jiangsu Agricultural Sciences,2015,43(24):409.
[3]劳东青,陈立平,邬欢欢,等.基于计算机视觉的枣叶含水率估算模型[J].江苏农业科学,2015,43(04):384.
 Lao Dongqing,et al.Study on jujube leaf water content estimation model based on computer vision[J].Jiangsu Agricultural Sciences,2015,43(24):384.
[4]王爱新,李春友,张喆.基于计算机视觉的农业图像害虫定位检测算法[J].江苏农业科学,2016,44(07):361.
 Wang Aixin,et al.Agricultural image pest location detection algorithm based on computer vision[J].Jiangsu Agricultural Sciences,2016,44(24):361.
[5]祁卫宇,王传宇,郭新宇.基于计算机视觉的植物行为感知研究综述[J].江苏农业科学,2017,45(06):20.
 Qi Weiyu,et al.Study on plant behavior perception based on computer vision: a review[J].Jiangsu Agricultural Sciences,2017,45(24):20.
[6]邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160.
 Xing Zhizhong,et al.Detection of egg freshness based on computer vision detection and neural network[J].Jiangsu Agricultural Sciences,2017,45(24):160.
[7]陈彩文,杜永贵,周超,等.基于支持向量机的鱼群摄食行为识别技术[J].江苏农业科学,2018,46(07):226.
 Chen Caiwen,et al.Study on fish feeding behavior recognition technology based on support vector machine[J].Jiangsu Agricultural Sciences,2018,46(24):226.
[8]刘祖鹏.基于优化PCNN模型的黄瓜叶片病斑提取方法[J].江苏农业科学,2018,46(18):216.
 Liu Zupeng.A cucumber leaf lesion extraction method based on optimized PCNN mode[J].Jiangsu Agricultural Sciences,2018,46(24):216.
[9]童阳,艾施荣,吴瑞梅,等.茶叶外形感官品质的计算机视觉分级研究[J].江苏农业科学,2019,47(05):170.
 Tong Yang,et al.Sensory evaluation of tea appearance using computer vision classification[J].Jiangsu Agricultural Sciences,2019,47(24):170.
[10]胡玲艳,许巍,秦山,等.基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法[J].江苏农业科学,2023,51(1):195.
 Hu Lingyan??et al.Image segmentation of key feature regions of European sweet cherry phenotype based on time-sharing overlap algorithm[J].Jiangsu Agricultural Sciences,2023,51(24):195.

备注/Memo

备注/Memo:
收稿日期:2020-02-13
基金项目:上海市科技兴农重点攻关项目(编号:201702080003F00072)
作者简介:张重阳(1992—),男,河南安阳人,硕士研究生,主要从事图像处理与模式识别研究。E-mail:cy3603@foxmail.com。
通信作者:陈明,教授,博士生导师,主要从事水产物联网和数据挖掘研究。E-mail:mchen@shou.Edu.cn。
更新日期/Last Update: 2020-12-20