[1]Arzani A,Ashraf M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants[J]. Critical Reviews in Plant Sciences,2016,35(3):146-189.
[2]Wang X H,Tu M X,Li Z,et al. Current progress and future prospects for the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology in fruit tree breeding[J]. Critical Reviews in Plant Sciences,2018,37(4):233-258.
[3]Charrier A,Vergne E,Dousset N,et al. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system[J]. Frontiers in Plant Science,2019,10:40.
[4]Zhou J H,Li D D,Wang G M,et al. Application and future perspective of CRISPR/Cas9 genome editing in fruit crops[J]. Journal of Integrative Plant Biology,2020,62(3):269-286.
[5]Yan F C,Wang W,Zhang J Q. CRISPR-Cas12 and Cas13:the lesser known siblings of CRISPR-Cas9[J]. Cell Biology and Toxicology,2019,35(6):489-492.
[6]Strecker J,Jones S,Koopal B,et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications,2019,10:212.
[7]Makarova K S,Zhang F,Koonin E V. Snapshot:class 2 CRISPR-Cas systems[J]. Cell,2017,168(1/2):328-328e1.
[8]Hu J H,Miller S M,Geurts M H,et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature,2018,556(7699):57-63.
[9]Moradpour M,Abdulah S N A. CRISPR/dCas9 platforms in plants:strategies and applications beyond genome editing[J]. Plant Biotechnology Journal,2020,18(1):32-44.
[10]Hsu P D,Lander E S,Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell,2014,157(6):1262-1278.
[11]Zetsche B,Gootenberg J S,Abudayyeh O O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,2015,163(3):759-771.
[12]杨帆,李寅. 新一代基因组编辑系统CRISPR/Cpf1[J]. 生物工程学报,2017,33(3):361-371.
[13]Ma X L,Zhu Q L,Chen Y L,et al. CRISPR/Cas9 platforms for genome editing in plants:developments and applications[J]. Molecular Plant,2016,9(7):961-974.
[14]Wang X H,Tu M X,Wang D J,et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal,2018,16(4):844-855.
[15]Rodríguez-Leal D,Lemmon Z H,Man J,et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell,2017,171(2):470-480,e8.
[16]Nishitani C,Hirai N,Komori S,et al. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Scientific Reports,2016,6:31481.
[17]Malnoy M,Viola R,Jung M H,et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Science,2016,7:1904.
[18]Pompili V,Costa L D,Piazza S,et al. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/ Cas9-FLP/FRT-based gene editing system[J]. Plant Biotechnology Journal,2020,18(3):845-858.
[19]Endo A,Masafumi M,Kaya H,et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J]. Scientific Reports,2016,6:38169.
[20]Daccord N,Celton J M,Linsmith G,et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development[J]. Nature Genetics,2017,49(7):1099-1106.
[21]Zhang L Y,Hu J A,Han X L,et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour[J]. Nature Communications,2019,10:1494.
[22]Alsuwaiyel M H.Algorithms:design techniques and analysis (revised edition)[M]. Singapore:World Scientific Publishing,2016:20-34.
[23]Koonin E V,Makarova K S,Zhang F. Diversity,classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology,2017,37:67-78.
[24]Nykky J,Vuento M,Gilbert L.Role of mitochondria in parvovirus pathology[J]. PLoS One,2014,9(1):e86124.
[25]Waters M T,Langdale J A.The making of a chloroplast[J]. The EMBO Journal,2009,28(19):2861-2873.
[1]贾永华,李晓龙,牛锐敏,等.叶面喷锌对苹果叶片生长及产量品质的影响[J].江苏农业科学,2014,42(12):218.
Jia Yonghua,et al.Effects of spraying zinc on leaves on leaf growth , yield and quality of apple[J].Jiangsu Agricultural Sciences,2014,42(7):218.
[2]里程辉,刘志,王宏,等.不同化学疏花剂对岳帅苹果疏花疏果及果实品质的影响[J].江苏农业科学,2014,42(11):180.
Li Chenghui,et al(80).Effects of different chemical flower thinners on flower thinning and fruit quality of apple “Yueshuai”[J].Jiangsu Agricultural Sciences,2014,42(7):180.
[3]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(7):151.
[4]李敏,厉恩茂,李壮,等.氨基酸钙叶面微肥对苹果缺素症的矫正及果实品质的影响[J].江苏农业科学,2013,41(11):180.
Li Min,et al.Effects of calcium amino acid foliar fertilizer on apple element deficiency disease and fruit quality[J].Jiangsu Agricultural Sciences,2013,41(7):180.
[5]王贵平,王金政,薛晓敏,等.晚秋叶施高浓度尿素对苹果落叶及贮藏氮素的影响[J].江苏农业科学,2014,42(01):140.
Wang Guiping,et al.Effects of high concentrations of foliar applied urea on defoliation and nitrogen storage of apple in late autumn[J].Jiangsu Agricultural Sciences,2014,42(7):140.
[6]宋哲,王宏,于年文,等.间伐、控冠处理对乔化凉香苹果树光合速率和果实产质量的影响[J].江苏农业科学,2016,44(05):290.
Song Zhe,et al.Effects of thinning and crown control on photosynthesis and fruit yield and quality of Liangxiang apple trees[J].Jiangsu Agricultural Sciences,2016,44(7):290.
[7]黄金凤,王冬梅,闫忠业,等.苹果遗传图谱的构建与QTL定位研究进展[J].江苏农业科学,2016,44(02):4.
Huang Jinfeng,et al.Construction of genetic map of apple and research progress of QTL localization[J].Jiangsu Agricultural Sciences,2016,44(7):4.
[8]苏律,宋俊霞,胡同乐,等.铁肥不同施用方式对苹果缺铁黄化病的矫正效果[J].江苏农业科学,2016,44(01):188.
Su Lü,et al.Corrective effect of iron fertilizer with different fertilization methods on iron chlorosis of apple tree[J].Jiangsu Agricultural Sciences,2016,44(7):188.
[9]李静,宋飞虎,浦宏杰,等.苹果控制排湿压力微波干燥模型研究[J].江苏农业科学,2015,43(11):529.
Li Jing,et al.Study on mathematical modeling of apple microwave drying under different moisture pressures[J].Jiangsu Agricultural Sciences,2015,43(7):529.
[10]廖春丽,王衡,李亚平,等.L-半胱氨酸及金属离子对马铃薯、苹果、甘薯多酚氧化酶活性的影响[J].江苏农业科学,2015,43(11):375.
Liao Chunli,et al.Effects of L-cysteine and metal ions on activity of polyphenol oxidase from potato,apple and sweet potato[J].Jiangsu Agricultural Sciences,2015,43(7):375.