|本期目录/Table of Contents|

[1]岳鹏,高海琴,李哲,等.2种常见CRISPR-Cas系统在苹果中的适用性特征[J].江苏农业科学,2022,50(7):43-51.
 Yue Peng,et al.Study on applicability of two common CRISPR-Cas systems in apple[J].Jiangsu Agricultural Sciences,2022,50(7):43-51.
点击复制

2种常见CRISPR-Cas系统在苹果中的适用性特征(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第7期
页码:
43-51
栏目:
生物技术
出版日期:
2022-04-05

文章信息/Info

Title:
Study on applicability of two common CRISPR-Cas systems in apple
作者:
岳鹏1 高海琴1 李哲2 米志波3 郑博1 赵彦敏1
1.张家口开放大学,河北张家口 075000; 2.张家口市第六中学,河北张家口 075000;3.河北省张家口市涉密载体管理中心,河北张家口 075000
Author(s):
Yue Penget al
关键词:
苹果CRISPR-Cas适用性特征PAM出现频率基因编辑
Keywords:
-
分类号:
S661.101
DOI:
-
文献标志码:
A
摘要:
运用生物信息学方法初步分析CRISPR-Cas9和Cpf1在苹果中的整体适用性特征,以期为苹果基因组编辑和CRISPR-Cas在苹果研究中的推广使用提供一定的参考和便利。结果表明,苹果染色体中有数量可观的PAM,平均间隔7 bp碱基有1个5′-NGG、间隔3 bp有1个5′-TTN;也就是说5′-TTN比5′-NGG的出现频率高。SpCas9、FnCpf1分别有29.0%、26.9%的作用位点几乎覆盖了所有染色体基因,个别不能被SpCas9识别的基因能被FnCpf1识别,反之亦然。苹果的CRISPR靶序列有大量重复,单一靶序列被视为能被Cas蛋白特异识别并有效编辑。在靶序列长度为20 nt时,99.5%的染色体基因可至少被其中1种Cas蛋白编辑,分别具有不同的可编辑度搭配;其中的237个基因只能被1种Cas蛋白编辑,填补了另一种Cas蛋白留下的编辑空白,另有220个染色体基因(0.5%)不能被任一种Cas蛋白编辑,即2种Cas蛋白同时留下编辑空白,没有互补。
Abstract:
-

参考文献/References:

[1]Arzani A,Ashraf M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants[J]. Critical Reviews in Plant Sciences,2016,35(3):146-189.
[2]Wang X H,Tu M X,Li Z,et al. Current progress and future prospects for the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology in fruit tree breeding[J]. Critical Reviews in Plant Sciences,2018,37(4):233-258.
[3]Charrier A,Vergne E,Dousset N,et al. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system[J]. Frontiers in Plant Science,2019,10:40.
[4]Zhou J H,Li D D,Wang G M,et al. Application and future perspective of CRISPR/Cas9 genome editing in fruit crops[J]. Journal of Integrative Plant Biology,2020,62(3):269-286.
[5]Yan F C,Wang W,Zhang J Q. CRISPR-Cas12 and Cas13:the lesser known siblings of CRISPR-Cas9[J]. Cell Biology and Toxicology,2019,35(6):489-492.
[6]Strecker J,Jones S,Koopal B,et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications,2019,10:212.
[7]Makarova K S,Zhang F,Koonin E V. Snapshot:class 2 CRISPR-Cas systems[J]. Cell,2017,168(1/2):328-328e1.
[8]Hu J H,Miller S M,Geurts M H,et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature,2018,556(7699):57-63.
[9]Moradpour M,Abdulah S N A. CRISPR/dCas9 platforms in plants:strategies and applications beyond genome editing[J]. Plant Biotechnology Journal,2020,18(1):32-44.
[10]Hsu P D,Lander E S,Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell,2014,157(6):1262-1278.
[11]Zetsche B,Gootenberg J S,Abudayyeh O O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,2015,163(3):759-771.
[12]杨帆,李寅. 新一代基因组编辑系统CRISPR/Cpf1[J]. 生物工程学报,2017,33(3):361-371.
[13]Ma X L,Zhu Q L,Chen Y L,et al. CRISPR/Cas9 platforms for genome editing in plants:developments and applications[J]. Molecular Plant,2016,9(7):961-974.
[14]Wang X H,Tu M X,Wang D J,et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal,2018,16(4):844-855.
[15]Rodríguez-Leal D,Lemmon Z H,Man J,et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell,2017,171(2):470-480,e8.
[16]Nishitani C,Hirai N,Komori S,et al. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Scientific Reports,2016,6:31481.
[17]Malnoy M,Viola R,Jung M H,et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Science,2016,7:1904.
[18]Pompili V,Costa L D,Piazza S,et al. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/ Cas9-FLP/FRT-based gene editing system[J]. Plant Biotechnology Journal,2020,18(3):845-858.
[19]Endo A,Masafumi M,Kaya H,et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J]. Scientific Reports,2016,6:38169.
[20]Daccord N,Celton J M,Linsmith G,et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development[J]. Nature Genetics,2017,49(7):1099-1106.
[21]Zhang L Y,Hu J A,Han X L,et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour[J]. Nature Communications,2019,10:1494.
[22]Alsuwaiyel M H.Algorithms:design techniques and analysis (revised edition)[M]. Singapore:World Scientific Publishing,2016:20-34.
[23]Koonin E V,Makarova K S,Zhang F. Diversity,classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology,2017,37:67-78.
[24]Nykky J,Vuento M,Gilbert L.Role of mitochondria in parvovirus pathology[J]. PLoS One,2014,9(1):e86124.
[25]Waters M T,Langdale J A.The making of a chloroplast[J]. The EMBO Journal,2009,28(19):2861-2873.

相似文献/References:

[1]贾永华,李晓龙,牛锐敏,等.叶面喷锌对苹果叶片生长及产量品质的影响[J].江苏农业科学,2014,42(12):218.
 Jia Yonghua,et al.Effects of spraying zinc on leaves on leaf growth , yield and quality of apple[J].Jiangsu Agricultural Sciences,2014,42(7):218.
[2]里程辉,刘志,王宏,等.不同化学疏花剂对岳帅苹果疏花疏果及果实品质的影响[J].江苏农业科学,2014,42(11):180.
 Li Chenghui,et al(80).Effects of different chemical flower thinners on flower thinning and fruit quality of apple “Yueshuai”[J].Jiangsu Agricultural Sciences,2014,42(7):180.
[3]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
 Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(7):151.
[4]李敏,厉恩茂,李壮,等.氨基酸钙叶面微肥对苹果缺素症的矫正及果实品质的影响[J].江苏农业科学,2013,41(11):180.
 Li Min,et al.Effects of calcium amino acid foliar fertilizer on apple element deficiency disease and fruit quality[J].Jiangsu Agricultural Sciences,2013,41(7):180.
[5]王贵平,王金政,薛晓敏,等.晚秋叶施高浓度尿素对苹果落叶及贮藏氮素的影响[J].江苏农业科学,2014,42(01):140.
 Wang Guiping,et al.Effects of high concentrations of foliar applied urea on defoliation and nitrogen storage of apple in late autumn[J].Jiangsu Agricultural Sciences,2014,42(7):140.
[6]宋哲,王宏,于年文,等.间伐、控冠处理对乔化凉香苹果树光合速率和果实产质量的影响[J].江苏农业科学,2016,44(05):290.
 Song Zhe,et al.Effects of thinning and crown control on photosynthesis and fruit yield and quality of Liangxiang apple trees[J].Jiangsu Agricultural Sciences,2016,44(7):290.
[7]黄金凤,王冬梅,闫忠业,等.苹果遗传图谱的构建与QTL定位研究进展[J].江苏农业科学,2016,44(02):4.
 Huang Jinfeng,et al.Construction of genetic map of apple and research progress of QTL localization[J].Jiangsu Agricultural Sciences,2016,44(7):4.
[8]苏律,宋俊霞,胡同乐,等.铁肥不同施用方式对苹果缺铁黄化病的矫正效果[J].江苏农业科学,2016,44(01):188.
 Su Lü,et al.Corrective effect of iron fertilizer with different fertilization methods on iron chlorosis of apple tree[J].Jiangsu Agricultural Sciences,2016,44(7):188.
[9]李静,宋飞虎,浦宏杰,等.苹果控制排湿压力微波干燥模型研究[J].江苏农业科学,2015,43(11):529.
 Li Jing,et al.Study on mathematical modeling of apple microwave drying under different moisture pressures[J].Jiangsu Agricultural Sciences,2015,43(7):529.
[10]廖春丽,王衡,李亚平,等.L-半胱氨酸及金属离子对马铃薯、苹果、甘薯多酚氧化酶活性的影响[J].江苏农业科学,2015,43(11):375.
 Liao Chunli,et al.Effects of L-cysteine and metal ions on activity of polyphenol oxidase from potato,apple and sweet potato[J].Jiangsu Agricultural Sciences,2015,43(7):375.

备注/Memo

备注/Memo:
收稿日期:2021-06-04
基金项目:中国成人教育协会“十四五”成人继续教育科研规划重点课题(编号:2021-323ZB);河北省张家口市科技项目(编号:18110300043);河北省张家口市社会科学立项研究课题(编号:2021121)。
作者简介:岳鹏(1984—),男,河北张家口人,硕士,讲师,从事农林生命科学类和开放教育研究。E-mail:yppolymerase@foxmail.com。
通信作者:赵彦敏,博士,副教授,从事农林生命科学类和开放教育研究。E-mail:zym319@163.com。
更新日期/Last Update: 2022-04-05