|本期目录/Table of Contents|

[1]王羿,丁鸣鸣,何菁,等.基于不同建模方法的土壤pH值无人机遥感影像反演[J].江苏农业科学,2022,50(14):224-231.
 Wang Yi,et al.Soil pH UAV remote sensing image inversion based on different modeling methods[J].Jiangsu Agricultural Sciences,2022,50(14):224-231.
点击复制

基于不同建模方法的土壤pH值无人机遥感影像反演(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第14期
页码:
224-231
栏目:
农业工程与信息技术
出版日期:
2022-07-20

文章信息/Info

Title:
Soil pH UAV remote sensing image inversion based on different modeling methods
作者:
王羿1丁鸣鸣2何菁3邵光成1
1.河海大学农业科学与工程学院,江苏南京 210098; 2.南京市水务局,江苏南京 210036;3.南京市水利建筑工程检测中心有限公司,江苏南京 210036
Author(s):
Wang Yiet al
关键词:
土壤pH值无人机多光谱遥感LASSO回归模型
Keywords:
-
分类号:
TP79;S127
DOI:
-
文献标志码:
A
摘要:
土壤pH值是土壤形成过程和熟化陪肥过程的一个指标。为了实现对农田土壤酸碱度状况的量化判别,提高模型预测精度,以江苏省南京市江宁区淳化街道农田土壤pH值为研究对象,采用棋盘式布点法选取60个点位进行土壤pH值测定,采用无人机搭载多光谱传感器获取土壤光谱信息,分别建立多元逐步线性回归(MLSR)、BP神经网络(BPNN)、LASSO回归模型,并采用R2RMSE、VIF指标评价3种模型精度。结果表明,LASSO回归方法较其他回归方法在多光谱与土壤pH值反演中表现较好,R2=0.618,RMSE=0.430,可以平衡MLSR的共线性问题以及BPNN样本容量较少、验证集精度较差等问题。采用LASSO回归模型进行反演及分类制图,发现研究区内92.6%的土壤呈中性,以期为无人机多光谱反演土壤pH值提供理论参考。
Abstract:
-

参考文献/References:

[1]尤承增,杨新源,束安,等. 土壤全钾含量高光谱估测模型[J]. 遥感信息,2017,32(4):92-97.
[2]赵军霞. 土壤酸碱性与植物的生长[J]. 内蒙古农业科技,2003,31(6):33-42.
[3]陈海亮. 日光温室土壤酸化的原因 危害及综合防治技术[J]. 天津农林科技,2009(4):37.
[4]陈建树. 土壤总氮与有机质含量近红外光谱分析模型迁移研究[D]. 济南:山东大学,2020.
[5]Gitelson A A,Gritz Y,Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology,2003,160(3):271-282.
[6]祝令亚,王世新,周艺,等. 应用MODIS监测太湖水体叶绿素a浓度的研究[J]. 遥感信息,2006,21(2):25-28.
[7]Ciganda V,Gitelson A,Schepers J. Non-destructive determination of maize leaf and canopy chlorophyll content[J]. Journal of Plant Physiology,2009,166(2):157-167.
[8]Curran P J,Dungan J L,Gholz H L. Seasonal LAI in slash pine estimated with landsat TM[J]. Remote Sensing of Environment,1992,39(1):3-13.
[9]Gupta R K,Vijayan D,Prasad T S. Comparative analysis of red-edge hyperspectral indices[J]. Advances in Space Research,2003,32(11):2217-2222.
[10]龚绍琦,王鑫,沈润平,等. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用,2010,25(2):169-177.
[11]陈思明,毛艳玲,邹小兴,等. 基于不同建模方法的湿地土壤有机质含量多光谱反演[J]. 土壤通报,2018,49(1):16-22.
[12]王凯龙,熊黑钢,张芳. 基于PLSR-BP复合模型的绿洲土壤pH高光谱反演[J]. 干旱区研究,2014,31(6):1005-1009.
[13]赵静,沈向,李欣,等. 梨园土壤pH值与其有效养分相关性分析[J]. 北方园艺,2009(11):5-8.
[14]陈婵婵,肖斌,余有本,等. 陕南茶园土壤有机质和pH值空间变异及其与速效养分的相关性[J]. 西北农林科技大学学报(自然科学版),2009,37(1):182-188.
[15]郭越. 基于机器视觉的探月监视相机颜色校正及器旁标定研究[D]. 北京:北京理工大学,2017:22-23.
[16]冷建飞,高旭,朱嘉平. 多元线性回归统计预测模型的应用[J]. 统计与决策,2016(7):82-85.
[17]范立新. 回归分析中多重共线性诊断方法[J]. 国外医学(卫生学分册),1994(1):34-37.
[18]丁元林,孔丹莉,毛宗福. 多重线性回归分析中的常用共线性诊断方法[J]. 数理医药学杂志,2004,17(4):299-300.
[19]沈从旺,徐丽华. 土壤pH值和全钾含量高光谱反演方法比较[J]. 江苏农业学报,2020,36(1):92-98.
[20]齐琳. 基于BP网络预测模型偏差控制的优化[J]. 企业技术开发,2012,31(8):12-13.
[21]夏子书,白一茹,包维斌,等. 基于多光谱和地理加权回归模型的石嘴山城市土壤有机碳空间分布研究[J]. 干旱区地理,2020,43(5):1348-1357.
[22]李朝英,郑路. 土壤pH测定的影响因素探讨[J]. 上海农业学报,2021,37(1):47-52.

相似文献/References:

[1]李银科,王菲,羊波,等.土壤pH值对烟叶化学成分和品质的影响[J].江苏农业科学,2013,41(12):98.
 Li Yinke,et al.Effects of pH of soil on chemical ingredients and quality of tobacco leaves[J].Jiangsu Agricultural Sciences,2013,41(14):98.
[2]孙世泽,汪传建,刘伟,等.无人机多光谱草地估产中的最佳波段组合研究[J].江苏农业科学,2018,46(04):190.
 Sun Shize,et al.Study on optimum band combination in estimating biomass of grassland based on UAV multispectral images[J].Jiangsu Agricultural Sciences,2018,46(14):190.
[3]梁钊雄,周红艺,吴国威,等.基于无人机影像的崩岗空间分布特征研究[J].江苏农业科学,2018,46(04):220.
 Liang Zhaoxiong,et al.Study on spatial distribution of collapse base on UAV images[J].Jiangsu Agricultural Sciences,2018,46(14):220.
[4]谢武双,陈卫平,彭驰.锰、镁元素对土壤pH值及镉有效性的影响[J].江苏农业科学,2018,46(11):252.
 Xie Wushuang,et al.Effects of manganese and magnesium elements on soil pH value and validity of cadmium[J].Jiangsu Agricultural Sciences,2018,46(14):252.
[5]邓天天,张玉珠,马培,等.不同氮磷配比对农田土壤硝化作用的影响[J].江苏农业科学,2018,46(17):269.
 Deng Tiantian,et al.Impact of different proportion of nitrogen and phosphorus on farmland soil nitrification[J].Jiangsu Agricultural Sciences,2018,46(14):269.
[6]琚书存,汪志存,张东彦,等.基于高分辨率无人机影像的喷药除草效果评估[J].江苏农业科学,2019,47(06):76.
 Ju Shucun,et al.Evaluation of spraying and weeding effect based on high resolution UAV image[J].Jiangsu Agricultural Sciences,2019,47(14):76.
[7]苏瑞东.无人机在现代农业中的应用综述[J].江苏农业科学,2019,47(21):75.
 Su Ruidong.Application of UAVs in modern agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(14):75.
[8]孙星星,王凯,李红阳,等.航空超低量喷雾技术在水稻生产上应用现状、存在问题及发展趋势[J].江苏农业科学,2020,48(13):29.
 Sun Xingxing,et al.Application status, existing problems and development trends of aviation ultra-low volume spray technology in rice production[J].Jiangsu Agricultural Sciences,2020,48(14):29.
[9]林峰.虚拟现实技术在农业可视化场景快速构建中的应用[J].江苏农业科学,2020,48(14):268.
 Lin Feng.Application of virtual reality technology in rapid construction of agricultural visualization scene[J].Jiangsu Agricultural Sciences,2020,48(14):268.
[10]姜麟珂,郑文轩,杨瑛.棉秆炭基复合肥的特征及对土壤理化性质的改良效果[J].江苏农业科学,2020,48(15):293.
 Jiang Linke,et al.Characteristics of cotton stalk carbon-based compound fertilizer and its improvement effect on soil physical and chemical properties[J].Jiangsu Agricultural Sciences,2020,48(14):293.

备注/Memo

备注/Memo:
收稿日期:2021-09-01
基金项目:江苏省“青蓝工程”项目;国家自然科学基金(编号:51879072);江苏省水利科技项目(编号:2015087)。
作者简介:王羿(1997—),男,甘肃天水人,硕士研究生,主要从事农业水资源高效利用研究。E-mail:290130679@qq.com。
通信作者:邵光成,博士,教授,主要从事农业水资源高效利用研究。E-mail:sgcln@126.com。
更新日期/Last Update: 2022-07-20