[1]Lamb C,Dixon R A. The oxidative burst in plant disease resistance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:251-275.
[2]Bradley D J,Kjellbom P,Lamb C J. Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein:a novel,rapid defense response[J]. Cell,1992,70(1):21-30.
[3]孙杨莹,陈远志,蔡叶,等. 肉桂油对采后病原菌Penicillium expansum的抑制作用研究[J]. 杭州师范大学学报(自然科学版),2020,19(1):47-56.
[4]Jrgensen M E,Nour-Eldin H H,Halkier B A. Transport of defense compounds from source to sink:lessons learned from glucosinolates[J]. Trends in Plant Science,2015,20(8):508-514.
[5]Mikkelsen M D,Petersen B L,Olsen C E,et al. Biosynthesis and metabolic engineering of glucosinolates[J]. Amino Acids,2002,22(3):279-295.
[6]Vo Q V,Rochfort S,Nam P C,et al. Synthesis of aromatic and indole alpha-glucosinolates[J]. Carbohydrate Research,2018,455:45-53.
[7]Vo Q V,Trenerry C,Rochfort S,et al. Synthesis and anti-inflammatory activity of aromatic glucosinolates[J]. Bioorganic & Medicinal Chemistry,2013,21(19):5945-5954.
[8]Jiang D,Lei J J,Cao B H,et al. Molecular cloning and characterization of three glucosinolate transporter (GTR) genes from Chinese kale[J]. Genes,2019,10(3):202.
[9]Madsen S R,Olsen C E,Nour-Eldin H H,et al. Elucidating the role of transport processes in leaf glucosinolate distribution[J]. Plant Physiology,2014,166(3):1450-1462.
[10]van den Bogaard V A B,van Luijk P,Hummel Y M,et al. Cardiac function after radiation therapy for breast cancer[J]. International Journal of Radiation Oncology Biology Physics,2019,104(2):392-400.
[11]Eminaga O,Al-Hamad O,Boegemann M,et al. Combination possibility and deep learning model as clinical decision-aided approach for prostate cancer[J]. Health Informatics Journal,2020,26(2):945-962.
[12]Xu D Y,Hunziker P,Koroleva O,et al. GTR-mediated radial import directs accumulation of defensive glucosinolates to sulfur-rich cells in the phloem cap of Arabidopsis inflorescence stem[J]. Molecular Plant,2019,12(11):1474-1484.
[13]Nour-Eldin H H,Madsen S R,Engelen S,et al. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters[J]. Nature Biotechnology,2017,35(4):377-382.
[14]田艳,邓放明,卿志星,等. 十字花科植物中硫代葡萄糖苷类物质的结构与功能研究进展[J]. 食品科学,2020,41(1):292-303.
[15]Chen S X,Glawischnig E,Jrgensen K,et al. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis[J]. The Plant Journal,2003,33(5):923-937.
[16]Grubb C D,Abel S. Glucosinolate metabolism and its control[J]. Trends in Plant Science,2006,11(2):89-100.
[17]Textor S,de Kraker J W,Hause B,et al. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis[J]. Plant Physiology,2007,144(1):60-71.
[18]王军伟,黄科,黄英娟,等. 十字花科蔬菜硫代葡萄糖苷合成相关转录因子调控研究进展[J]. 园艺学报,2019,46(9):1752-1764.
[19]Hull A K,Vij R,Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(5):2379-2384.
[20]Tantikanjana T,Mikkelsen M D,Hussain M,et al. Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants[J]. Plant Physiology,2004,135(2):840-848.
[21]Wittstock U,Halkier B A. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate[J]. Journal of Biological Chemistry,2000,275(19):14659-14666.
[22]Essoh A P,Monteiro F,Pena A R,et al. Exploring glucosinolates diversity in Brassicaceae:a genomic and chemical assessment for deciphering abiotic stress tolerance[J]. Plant Physiology and Biochemistry,2020,150:151-161.
[23]Kliebenstein D J,Lambrix V M,Reichelt M,et al. Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis[J]. The Plant Cell,2001,13(3):681-693.
[24]Jensen L M,Jepsen H S K,Halkier B A,et al. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis[J]. Frontiers in Plant Science,2015,6:697.
[25]Li J,Hansen B G,Ober J A,et al. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis[J]. Plant Physiology,2008,148(3):1721-1733.
[26]Burow M,Atwell S,Francisco M,et al. The glucosinolate biosynthetic gene AOP2 mediates feed-back regulation of jasmonic acid signaling in Arabidopsis[J]. Molecular Plant,2015,8(8):1201-1212.
[27]Snderby I E,Geu-Flores F,Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond[J]. Trends in Plant Science,2010,15(5):283-290.
[28]刘翔,左开井,张飞,等. MYB类转录因子在植物腺毛发育中的作用研究进展[J]. 上海交通大学学报(农业科学版),2010,28(2):188-194.
[29]Mandaokar A,Browse J.MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis[J]. Plant Physiology,2008,149(2):851-862.
[30]Stracke R,Ishihara H,Huep G,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. The Plant Journal,2007,50(4):660-677.
[31]Gigolashvili T,Yatusevich R,Berger B,et al. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana[J]. The Plant Journal,2007,51(2):247-261.
[32]Liu S,Huang H B,Yi X Q,et al. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study[J]. Plant Biotechnology Journal,2020,18(6):1472-1484.
[33]Miao H Y,Wei J,Zhao Y T,et al. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis[J]. Journal of Experimental Botany,2013,64(4):1097-1109.
[34]Dubos C,Stracke R,Grotewold E,et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15(10):573-581.
[35]McKenzie M,Matich A,Hunter D,et al. Selenium application during radish (Raphanus sativus) plant development alters glucosinolate metabolic gene expression and results in the production of 4-(methylseleno)but-3-enyl glucosinolate[J]. Plants,2019,8(10):427.
[36]Schweizer F,Fernández-Calvo P,Zander M,et al. Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC4 regulate glucosinolate biosynthesis,insect performance,and feeding behavior[J]. The Plant Cell,2013,25(8):3117-3132.
[37]Celenza J L,Quiel J A,Smolen G A,et al. The Arabidopsis ATR1 myb transcription factor controls indolic glucosinolate homeostasis[J]. Plant Physiology,2005,137(1):253-262.
[38]Guo R F,Qian H M,Shen W S,et al. BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis[J]. Journal of Experimental Botany,2013,64(8):2401-2412.
[39]Millard P S,Kragelund B B,Burow M. Evolution of A bHLH interaction motif[J]. International Journal of Molecular Sciences,2021,22(1):447.
[40]Andini S,Dekker P,Gruppen H,et al. Modulation of glucosinolate composition in Brassicaceae seeds by germination and fungal elicitation[J]. Journal of Agricultural and Food Chemistry,2019,67(46):12770-12779.
[41]Li B H,Tang M,Nelson A,et al. Network-guided discovery of extensive epistasis between transcription factors involved in aliphatic glucosinolate biosynthesis[J]. The Plant Cell,2018,30(1):178-195.
[42]Frerigmann H,Gigolashvili T. MYB34,MYB51,and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Molecular Plant,2014,7(5):814-828.
[43]蒿连梅. 拟南芥转录因子MYB28和MYB51对芥子油苷代谢的调控作用[D]. 哈尔滨:东北农业大学,2013.
[44]Nugroho A B D,Han N,Pervitasari A N,et al. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development[J]. Plant Molecular Biology,2020,102(1/2):171-184.
[45]Brown P D,Tokuhisa J G,Reichelt M,et al. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana[J]. Phytochemistry,2003,62(3):471-481.
[46]Kristensen C,Morant M,Olsen C E,et al. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(5):1779-1784.
[47]Clausen M,Kannangara R M,Olsen C E,et al. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways[J]. The Plant Journal,2015,84(3):558-573.
[48]Andersen T G,Nour-Eldin H H,Fuller V L,et al. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis[J]. The Plant Cell,2013,25(8):3133-3145.
[49]Chen S X,Petersen B L,Olsen C E,et al. Long-distance phloem transport of glucosinolates in Arabidopsis[J]. Plant Physiology,2001,127(1):194-201.
[50]Koroleva O A,Davies A,Deeken R,et al. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk[J]. Plant Physiology,2000,124(2):599-608.
[51]Snderby I E,Hansen B G,Bjarnholt N,et al. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates[J]. PLoS One,2007,2(12):e1322.
[52]Jrgensen M E,Xu D Y,Crocoll C,et al. Correction:Origin and evolution of transporter substrate specificity within the NPF family[J]. eLife,2019,8:e46989.
[53]Jrgensen M E,Xu D Y,Crocoll C,et al. Origin and evolution of transporter substrate specificity within the NPF family[J]. eLife,2017,6:e19466.
[54]Saito H,Oikawa T,Hamamoto S,et al. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis[J]. Nature Communications,2015,6:6095.
[55]Wang Y Y,Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. The Plant Cell,2011,23(5):1945-1957.
[56]Nour-Eldin H H,Andersen T G,Burow M,et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds[J]. Nature,2012,488(7412):531-534.
[57]Krouk G,Lacombe B,Bielach A,et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Developmental Cell,2010,18(6):927-937.
[58]Shih P Y,Chou S J,Müller C,et al. Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation[J]. Molecular Plant Pathology,2018,19(8):1956-1970.
[59]Andersen T G,Halkier B A. Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots[J]. Plant Signaling & Behavior,2014,9(1):e27740.
[60]Burow M,Halkier B A. How does a plant orchestrate defense in time and space?Using glucosinolates in Arabidopsis as case study[J]. Current Opinion in Plant Biology,2017,38:142-147.
[61]Koroleva O A,Gibson T M,Cramer R,et al. Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation[J]. The Plant Journal,2010,64(3):456-469.
[62]Wittstock U,Burow M. Glucosinolate breakdown in Arabidopsis:mechanism,regulation and biological significance[J]. The Arabidopsis Book,2010,8:e0134.
[63]阮颖,周朴华,刘春林. 植物硫代葡萄糖苷-黑芥子酶底物酶系统[J]. 湖南农业大学学报(自然科学版),2007,33(1):18-23,78.
[64]修丽丽,钮昆亮. 十字花科植物中的硫代葡萄糖苷及其降解产物[J]. 浙江科技学院学报,2004,16(3):187-189,211.
[65]Clay N K,Adio A M,Denoux C,et al. Glucosinolate metabolites required for an Arabidopsis innate immune response[J]. Science,2009,323(5910):95-101.
[66]Kelly P J,Bones A,Rossiter J T. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea[J]. Planta,1998,206(3):370-377.
[67]Wang J S,Yu H F,Zhao Z Q,et al. Natural variation of glucosinolates and their breakdown products in broccoli (Brassica oleracea var. italica) seeds[J]. Journal of Agricultural and Food Chemistry,2019,67(45):12528-12537.
[68]Madsen S R,Kunert G,Reichelt M,et al. Feeding on leaves of the glucosinolate transporter mutant gtr1gtr2 reduces fitness of Myzus persicae[J]. Journal of Chemical Ecology,2015,41(11):975-984.
[69]Wittstock U,Halkier B A.Glucosinolate research in the Arabidopsis era[J]. Trends in Plant Science,2002,7(6):263-270.
[70]Ishida M,Hara M,Fukino N,et al. Glucosinolate metabolism,functionality and breeding for the improvement of Brassicaceae vegetables[J]. Breeding Science,2014,64(1):48-59.
[71]Ji R,Lei J X,Chen I W,et al. Cytochrome P450s CYP380C6 and CYP380C9 in green peach aphid facilitate its adaptation to indole glucosinolate-mediated plant defense[J]. Pest Management Science,2021,77(1):148-158.
[72]Pfalz M,Vogel H,Kroymann J. The gene controlling the indole glucosinolate Modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis[J]. The Plant Cell,2009,21(3):985-999.
[73]Hemm M R,Ruegger M O,Chapple C .The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes[J]. The Plant Cell,2003,15(1):179-194.
[74]Zhang Y Y,Huai D X,Yang Q Y,et al. Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea[J]. PLoS One,2015,10(10):e0140491.
[75]Pfalz M,Vogel H,Kroymann J. The gene controlling the Indole glucosinolate Modifier1 Quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis[J]. The Plant Cell,2009,21(3):985-999.
[76]Ratzka A,Vogel H,Kliebenstein D J,et al. Disarming the mustard oil bomb[J]. PNAS,2002,99(17):11223-11228.
[77]Liu Y,Rossi M,Liang X,et al. An integrated metabolomics study of glucosinolate metabolism in different Brassicaceae genera[J]. Metabolites,2020,10(8):313.
[78]张大琪,颜冬冬,方文生,等. 生物熏蒸:环境友好型土壤熏蒸技术[J]. 农药学学报,2020,22(1):11-18.
[79]李靖. 有机肥对作物土传病害防治的研究进展[J]. 四川农业科技,2017(6):31-32.
[80]牛桂言,邵惠芳,朱金峰,等. 我国植烟土壤修复的研究进展[J]. 中国农业科技导报,2017,19(3):115-122.
[81]黄文坤,张桂娟,张超,等. 生物熏蒸结合阳光消毒治理温室根结线虫技术[J]. 植物保护,2010,36(1):139-142.
[82]李明社,李世东,缪作清,等. 生物熏蒸用于植物土传病害治理的研究[J]. 中国生物防治,2006,22(4):296-302.
[83]姚小桐. 生物熏蒸结合枯草芽孢杆菌防控茄子黄萎病及对土壤养分影响[D]. 哈尔滨:东北农业大学,2018.
[84]Reintanz B,Lehnen M,Reichelt M,et al. Bus,a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates[J]. The Plant Cell,2001,13(2):351-367.
[85]Bohinc T,Trdan S. Environmental factors affecting the glucosinolate content in Brassicaceae[J]. Journal of Food,Agriculture & Environment,2012,10(2):357-360.
[86]陈强,张其忠,刘健,等. 紫杉醇脂质体与传统紫杉醇治疗乳腺癌和非小细胞肺癌的随机对照研究[J]. 中华肿瘤杂志,2003,25(2):190-192.
[87]田金,娄雪玲,姚丽,等. 高压氧增强长春花碱对人宫颈癌HeLa细胞的抗癌活性[J]. 中华航海医学与高气压医学杂志,2019,26(6):525-528.
[88]Keck A S,Finley J W. Cruciferous vegetables:cancer protective mechanisms of glucosinolate hydrolysis products and selenium[J]. Integrative Cancer Therapies,2004,3(1):5-12.
[89]Ji Y,Morris M E. Effect of organic isothiocyanates on breast cancer resistance protein (ABCG2)-mediated transport[J]. Pharmaceutical Research,2004,21(12):2261-2269.
[90]Jezek J,Haggett B G,Atkinson A,et al. Determination of glucosinolates using their alkaline degradation and reaction with ferricyanide[J]. Journal of Agricultural and Food Chemistry,1999,47(11):4669-4674.
[91]单毓娟,吴坤. 十字花科蔬菜的癌症预防作用[J]. 国外医学(卫生学分册),2005(5):269-273.
[92]Franklin M R,Slawson M H,Moody D E. Selective induction of rat liver phase Ⅱ enzymes by N-heterocycle analogues of phenanthrene:a response exhibiting high correlation between UDP-glucuronosyltransferase and microsomal epoxide hydrolase activities[J]. Xenobiotica,1993,23(3):267-277.
[93]张璇. 不同烹饪方式和烹饪时间对西蓝花中萝卜硫苷和萝卜硫素的影响[J]. 食品安全导刊,2020(9):111-112.
[94]林旭辉,李荣,姜子涛. 辣根挥发油化学成分的研究[J]. 食品科学,2001,22(3):73-75.
[95]丁艳,李丽倩,顾振新,等. 7种十字花科种子中黑芥子酶降解油菜籽饼粕中硫苷的产物比较分析[J]. 食品科学,2014,35(13):1-7.
[96]肖华志,牛丽影,廖小军,等. 芥末油、青芥辣、冲菜的挥发性风味成分的SPME/GC/MS测定[J]. 中国调味品,2004,29(6):42-45,17.
[1]邓艳美,王红妹,万从庆.青花菜中硫代葡萄糖苷的提取工艺[J].江苏农业科学,2013,41(06):254.
Deng Yanmei,et al.Extraction technology of glucosinolates from broccoli[J].Jiangsu Agricultural Sciences,2013,41(2):254.
[2]马越,丁云花,刘光敏,等.青花菜花球及叶片中硫代葡萄糖苷组分及含量分析[J].江苏农业科学,2016,44(07):300.
Ma Yue,et al.Analysis of glucosinolate composition and contents in flowers and leaves of broccoli (Brassica oleracea L. var. botrytis L.)[J].Jiangsu Agricultural Sciences,2016,44(2):300.
[3]刘蕾,宋佳,王辉.甘蓝硫苷生物合成相关基因FMOGS-OXS的预测与分析[J].江苏农业科学,2017,45(11):22.
Liu Lei,et al.Prediction and analysis of glucosinolate biosynthesis related genes FMOGS-OXS in cabbage (Brassica oleracea L.)[J].Jiangsu Agricultural Sciences,2017,45(2):22.
[4]陈凌云,余芳洁,陈君杰,等.植物硫代葡萄糖苷二次修饰及调控的研究进展[J].江苏农业科学,2019,47(04):22.
Chen Lingyun,et al.Research progress of secondary modification and regulation of glucosinolate in plants[J].Jiangsu Agricultural Sciences,2019,47(2):22.