[1]吴志刚. 石墨烯产业化:蓄势待发[J]. 中关村,2021(11):20-25.
[2]喻理. 基于石墨烯材料的黄曲霉毒素液相色谱检测方法研究[D]. 北京:中国农业科学院,2014.
[3]谈诗. 氧化石墨烯对大花蕙兰组织培养的效应及防褐变机理研究[D]. 长沙:湖南农业大学,2014.
[4]Antonacci A,Arduini F,Moscone D,et al. Nanostructured (Bio)sensors for smart agriculture[J]. Trends in Analytical Chemistry,2018,98:95-103.
[5]文阳平. 电子型导电高分子生化传感器的构建及其农业应用基础研究[D]. 南昌:江西农业大学,2013.
[6]王志强. 农产品及其产地环境中重金属快速检测关键技术研究[D]. 北京:中国农业大学,2014.
[7]Schedin F,Geim A K,Morozov S V,et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials,2007,6(9):652-655.
[8]李聆声,范理,张淑仪,等. 基于石墨烯敏感层的高灵敏度声表面波氢气传感器性能优化[J]. 南京大学学报(自然科学),2021,57(6):1006-1012.
[9]Zheng Z Q,Wang H L. Different elements doped graphene sensor for CO2 greenhouse gases detection:the DFT study[J]. Chemical Physics Letters,2019,721:33-37.
[10]尚念泽,程熠,敖申,等. 基于石墨烯光子晶体光纤的流体传感器[J]. 物理化学学报,2022,38(12):2108041.
[11]Papamatthaiou S,Argyropoulos D P,Farmakis F,et al. The effect of thermal reduction and film thickness on fast response transparent graphene oxide humidity sensors[J]. Procedia Engineering,2016,168:301-304.
[12]张莹. 基于还原氧化石墨烯场效应管型室温SO2气体传感器的研究[D]. 北京:北京交通大学,2021.
[13]Lan L Y,Le X H,Dong H Y,et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface[J]. Biosensors & Bioelectronics,2020,165:112360.
[14]Sett A,Biswas K,Majumder S,et al. Graphene and its nanocomposites based humidity sensors:recent trends and challenges[M]//Humidity Sensors-Types and Applications. IntechOpen,2021.
[15]Kalita H,Palaparthy V S,Baghini M S,et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties[J]. Carbon,2020,165:9-17.
[16]Palaparthy V S,Kalita H,Surya S G,et al. Graphene oxide based soil moisture microsensor for in situ agriculture applications[J]. Sensors and Actuators B:Chemical,2018,273:1660-1669.
[17]黄晨晨. 还原氧化石墨烯/四氧化三铁磁性纳米复合物在农兽药残留检测中的应用研究[D]. 武汉:华中农业大学,2016.
[18]Rai P K,Kumar V,Lee S,et al. Nanoparticle-plant interaction:implications in energy,environment,and agriculture[J]. Environment International,2018,119:1-19.
[19]Chaudhary M,Verma S,Kumar A,et al. Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops[J]. Talanta,2021,235:122717.
[20]Xu W D,Huang Y X,Zhou R Y,et al. Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface[J]. ACS Applied Materials & Interfaces,2020,12(39):44281-44287.
[21]陈曦,张峰. 氮掺杂石墨烯的制备及其在重金属离子检测中的应用[J]. 青岛科技大学学报(自然科学版),2021,42(6):28-34.
[22]Wang X J,Zhu C H,Hu X Y,et al. Highly sensitive surface-enhanced Raman scattering detection of organic pesticides based on Ag-nanoplate decorated graphene-sheets[J]. Applied Surface Science,2019,486:405-410.
[23]李海涛,沈健民,陈骏. 石墨烯在农业中应用前景浅析[J]. 江苏农机化,2020(5):20-23.
[24]王建军,代晋,沈维元,等. 石墨烯远红外电暖在蔬菜集约化育苗中的应用初探与前景分析[J]. 中国蔬菜,2019(1):13-15.
[25]黄盛杰,吴煜,沈健民. 粮食干燥设备发展趋势:从热风干燥到石墨烯远红外辐射[J]. 江苏农机化,2021(1):33-36.
[26]朱晓明,周昕,徐杏,等. 石墨烯加热板/膜作为仔猪保温供热体的节能特性研究[J]. 安徽农业科学,2020,48(24):216-217,224.
[27]魏杰,李昊,张亚男,等. 石墨烯复合材料在电热防/除冰领域研究进展[J]. 中国材料进展,2022,41(6):487-496.
[28]方慧,程瑞锋,仝宇欣,等. 基于CFD的植物工厂圆形锯齿状水冷LED灯管降温效果模拟[J]. 农业工程学报,2021,37(7):212-217.
[29]Lin M T,Chang C C,Horng R H,et al. Heat dissipation performance for the application of light emitting diode[C]//Symposium on Design,Test,Integration & Packaging of MEMS/MOEMS.Rome,Italy:IEEE,2009:145-149.
[30]Kozai T. Sustainable plant factory:closed plant production systems with artificial light for high resource use efficiencies and quality produce[J]. Acta Horticulturae,2013(1004):27-40.
[31]Muthu S,Schuurmans F J P,Pashley M D.Red,green,and blue LEDs for white light illumination[J]. IEEE Journal of Selected Topics in Quantum Electronics,2002,8(2):333-338.
[32]Li X,Fang M,Wang W,et al. Graphene heat dissipation film for thermal management of hot spot in electronic device[J]. Journal of Materials Science:Materials in Electronics,2016,27(7):7715-7721.
[33]周伟,侯红平,高亚非,等. 石墨烯复合材料作为散热涂层在工业计算机上的应用[J]. 工业技术创新,2021,8(6):5-9.
[34]Chen J N,Sun L,Cheng Y,et al. Graphene oxide-silver nanocomposite:novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention[J]. ACS Applied Materials & Interfaces,2016,8(36):24057-24070.
[35]Zhang M,Gao B,Chen J J,et al. Effects of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research,2015,17(2):78.
[36]刘永文,姚文博,贾祺,等. 氧化石墨烯对桧柏种子萌发的影响[J]. 山西大同大学学报(自然科学版),2021,37(6):1-3,7.
[37]Chakravarty D,Erande M B,Late D J. Graphene quantum dots as enhanced plant growth regulators:effects on coriander and garlic plants[J]. Journal of the Science of Food and Agriculture,2015,95(13):2772-2778.
[38]Lu K,Shen D L,Dong S P,et al. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants[J]. Nano Research,2020(12):3198-3205.
[39]谈诗. 氧化石墨烯对大花蕙兰组织培养的效应及防褐变机理研究[D]. 长沙:湖南农业大学,2014.
[40]Anjum N A,Singh N,Singh M K,et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.)[J]. Science of the Total Environment,2014,472:834-841.
[41]Liu S J,Wei H M,Li Z Y,et al. Effects of graphene on germination and seedling morphology in rice[J]. Journal of Nanoscience and Nanotechnology,2015,15(4):2695-2701.
[42]Ren W J,Chang H W,Teng Y. Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings[J]. Science of the Total Environment,2016,572:926-934.
[43]高聪,萧楚健,鲁帅,等. 氧化石墨烯对拟南芥生长的促进作用[J]. 生物技术通报,2022,38(6):120-128.
[44]Kim M J,Kim W,Chung H .Effects of silver-graphene oxide on seed germination and early growth of crop species[J]. PeerJ,2020,8:e8387.
[45]Davide G,Isabel L M,El-Sagheer A H,et al. Graphene oxide-upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops[J]. ACS Nano,2018,12(6):6273-6279.
[46]Bobrinetskiy I I,Knezevic N Z. Graphene-based biosensors for on-site detection of contaminants in food[J]. Analytical Methods,2018,10(42):5061-5070.
[47]Zaytseva O,Neumann G. Carbon nanomaterials:production,impact on plant development,agricultural and environmental applications[J]. Chemical and Biological Technologies in Agriculture,2016,3(1):1-26.
[48]Anjum N A,Singh N,Singh M K,et al. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)[J]. Journal of Nanoparticle Research,2013,15(7):1770.
[49]Ali I,Basheer A A,Mbianda X Y,et al. Graphene based adsorbents for remediation of noxious pollutants from wastewater[J]. Environment International,2019,127:160-180.
[50]Balandin A A,Ghosh S,Bao W Z,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
[51]Begum P,Ikhtiari R,Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage,tomato,red spinach,and lettuce[J]. Carbon,2011,49(12):3907-3919.
[52]Bolotin K I,Sikes K J,Jiang Z,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9/10):351-355.
[53]Cao X S,Ma C X,Chen F R,et al. New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species[J]. Journal of Hazardous Materials,2021,410:124959.
[54]Choi J T,Kim D H,Ryu K S,et al. Functionalized graphene sheet/polyurethane nanocomposites:effect of particle size on physical properties[J]. Macromolecular Research,2011,19(8):809-814.
[55]孔祥才,王桂霞. 农业供给侧改革背景下中国农业污染的治理路径[J]. 云南社会科学,2017(6):53-57,103,185.
[56]He X J,Deng H,Hwang H M. The current application of nanotechnology in food and agriculture[J]. Journal of Food and Drug Analysis,2019,27(1):1-21.
[57]Song S J,Wan M H,Feng W L,et al. Graphene oxide as the potential vector of hydrophobic pesticides:ultrahigh pesticide loading capacity and improved antipest activity[J]. ACS Agricultural Science & Technology,2021,1(3):182-191.
[58]Chen J N,Wang X P,Han H Y. A new function of graphene oxide emerges:inactivating phytopathogenic bacterium Xanthomonas oryzae pv[J]. Journal of Nanoparticle Research,2013,15(5):1658.
[59]Wang Y L,Song S J,Chu X H,et al. A new temperature-responsive controlled-release pesticide formulation-poly(N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,612:125987.
[60]Lu K,Dong S P,Xia T,et al. Kupffer cells degrade 14C-labeled few-layer graphene to 14CO2 in liver through erythrophagocytosis[J]. ACS Nano,2021,15(1):396-409.
[61]Gareeb R Y,Elnouby M S,Hasan M A,et al. New trend for using the reduced graphene oxide as effective and eco-friendly nematicide[J]. Materiale Plastice,2019,56(1):59-64.
[62]Luo Z X,Wang Z H,Xing B S. Insights into the uptake,distribution,and efflux of arsenite associated with nano-TiO2 in determining its toxicity on Daphnia magna[J]. Environmental Science:Nano,2020,7(4):1194-1204.
[63]Zhou H,Liu S S,Wan F L,et al. Graphene oxide-acaricide nanocomposites advance acaricidal activity of acaricides against Tetranychus cinnabarinus by directly inhibiting the transcription of a cuticle protein gene[J]. Environmental Science:Nano,2021,8(11):3122-3137.
[64]Cai X,Tan S Z,Yu A L,et al. Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity[J]. Chemistry,2012,7(7):1664-1670.
[65]Sawangphruk M,Srimuk P,Chiochan P,et al. Synthesis and antifungal activity of reduced graphene oxide nanosheets[J]. Carbon,2012,50(14):5156-5161.
[66]Akhavan O,Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736.
[67]Zhang M,Gao B,Chen J J,et al. Slow-release fertilizer encapsulated by graphene oxide films[J]. Chemical Engineering Journal,2014,255:107-113.
[68]Kabiri S,Degryse F,Tran D N H,et al. Graphene oxide:a new carrier for slow release of plant micronutrients[J]. ACS Applied Materials & Interfaces,2017,9(49):43325-43335.
[69]Andelkovic I B,Kabiri S,Tavakkoli E,et al. Graphene oxide-Fe(Ⅲ) composite containing phosphate—a novel slow release fertilizer for improved agriculture management[J]. Journal of Cleaner Production,2018,185:97-104.
[70]张明露. 氧化石墨烯及其复合材料在茶叶农药残留分析前处理中的应用研究[D]. 北京:中国农业科学院,2016.
[71]刘宇程,牛雯,王琴,等. 氧化石墨烯复合膜处理含油废水的研究进展[J]. 油气田环境保护,2021,31(4):11-17.
[72]Naseem T,Zain-ul-Abdin,Waseem M,et al. Reduced graphene oxide/zinc oxide nanocomposite:from synthesis to its application for wastewater purification and antibacterial activity[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(10):3907-3919.
[73]Wibowo K M,Sahdan M Z,Ramli N I,et al. Detection of Escherichia coli bacteria in wastewater by using graphene as a sensing material[J]. Journal of Physics:Conference Series,2018,995:012063.
[74]张琳娇. 石墨烯使用中存在的问题及其发展趋势[J]. 中国高新科技,2021(18):101-102.
[75]张惠宁,石中玉,肖彦奎,等. 3D打印制备三维石墨烯及其在水处理中的应用[J]. 化工进展,2022,41(5):2231-2242.
[76]Cheriyamundath S,Vavilala S L. Nanotechnology-based wastewater treatment[J]. Water and Environment Journal,2021,35(1):123-132.
[77]黄静,刘霄悦,张建成,等. 不同碳素纳米材料对黄曲霉毒素B1的吸附[J]. 江苏农业学报,2022,38(2):539-548.
[78]王青山,熊馨雅,刘韦岩,等. 氧化石墨烯-多壁碳纳米管低压膜抗污染性能研究[J]. 环境科学学报,2021,41(12):4894-4907.
[79]孙婷婷,尹宗杰. 石墨烯材料在环境保护方面的应用[J]. 节能与环保,2021(10):87-88.
[1]宋雯雯,陆学文,周华.国库集中支付制度下农业科研经费管理存在的问题及对策[J].江苏农业科学,2014,42(11):485.
Song Wenwen,et al(8).Problems and countermeasures for management of agricultural scientific research fund under treasury centralization payment system[J].Jiangsu Agricultural Sciences,2014,42(7):485.
[2]汤爱萍,万金保,李爽,等.环境系统工程在农业非点源污染控制中的应用[J].江苏农业科学,2013,41(06):353.
Tang Aiping,et al.Application of environment system engineering in controlling agricultural non-point source pollution[J].Jiangsu Agricultural Sciences,2013,41(7):353.
[3]李万青.中国农业国际竞争力的优势、劣势及提升路径——基于金砖国家农业基本状况的比较[J].江苏农业科学,2014,42(09):437.
Li Wanqing.Strength, weakness and enhance path of Chinas agricultural international competitiveness—Based on comparative study on basic situation of agriculture in BRIC countries[J].Jiangsu Agricultural Sciences,2014,42(7):437.
[4]鄢姣,赵军.中国农业风险评估——基于H-P滤波分析与非平衡面板数据的实证研究[J].江苏农业科学,2014,42(09):409.
Yan Jiao,et al.Risk assessment of Chinas agriculture-Based on empirical study of H-P filter and the unbalanced panel data[J].Jiangsu Agricultural Sciences,2014,42(7):409.
[5]张晓莉,逄春蕾,尹作华.基于修正钻石模型的新疆生产建设兵团农业竞争力研究——与黑龙江农垦的比较[J].江苏农业科学,2014,42(09):413.
Zhang Xiaoli,et al.Study on agricultural competitiveness of Xinjiang Production and Construction Corps based on modified diamond model—Comparative analysis with Heilongjiang land reclamation[J].Jiangsu Agricultural Sciences,2014,42(7):413.
[6]鲍荣龙.设施草莓的安全高效栽培集成技术及产业化趋势[J].江苏农业科学,2013,41(08):166.
Bao Ronglong.Safe and efficient cultivation integrated technology and industrialization trends for strawberry in greenhouse[J].Jiangsu Agricultural Sciences,2013,41(7):166.
[7]何榕,盖玉芳,焦隽,等.江苏省扬州市发展农业适度规模经营的探索[J].江苏农业科学,2016,44(05):550.
He Rong,et al.Exploration of appropriate agriculture scale management development in Yangzhou,Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(7):550.
[8]潘薇,练霞.面向农业领域的可重用学习对象模型[J].江苏农业科学,2014,42(03):357.
Pan Wei,et al.A reusable learning object model for agriculture domain[J].Jiangsu Agricultural Sciences,2014,42(7):357.
[9]李国锋,张振华,邹轶.农业生产标准化存在的问题及对策建议[J].江苏农业科学,2016,44(02):468.
Li Guofeng,et al.Problems and countermeasures for standardization of agricultural production[J].Jiangsu Agricultural Sciences,2016,44(7):468.
[10]倪圣亚,薛民琪,陆胜龙,等.盐城市农业面源污染现状与防治对策[J].江苏农业科学,2015,43(12):413.
Ni Shengya,et al.Present situation and countermeasures of agricultural non-point source pollution in Yancheng City[J].Jiangsu Agricultural Sciences,2015,43(7):413.