|本期目录/Table of Contents|

[1]邢安琪,田志强,储睿文,等.一氧化氮对茶树不同组织响应铝胁迫的影响[J].江苏农业科学,2023,51(7):110-117.
 Xing Anqi,et al.Impacts of nitric oxide on response of different tissues to aluminum stress in Camellia sinensis[J].Jiangsu Agricultural Sciences,2023,51(7):110-117.
点击复制

一氧化氮对茶树不同组织响应铝胁迫的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第7期
页码:
110-117
栏目:
园艺与林学
出版日期:
2023-04-05

文章信息/Info

Title:
Impacts of nitric oxide on response of different tissues to aluminum stress in Camellia sinensis
作者:
邢安琪1田志强1储睿文2徐晓寒1尹娟3戴令聪1林凡力1杨亦扬2王玉花1
1.南京农业大学园艺学院,江苏南京 210095; 2.江苏省农业科学院休闲农业研究所,江苏南京 210014;3.江苏茅山茶海有限公司,江苏常州 213200
Author(s):
Xing Anqiet al
关键词:
茶树铝胁迫一氧化氮NOS活性抗氧化酶活性
Keywords:
-
分类号:
S571.101
DOI:
-
文献标志码:
A
摘要:
为探索外源NO在茶树不同组织响应Al3+胁迫生理过程中发挥的作用,以茶树不同组织为试验材料,研究不同处理下(对照、Al3+处理、Al3++NO释放剂DEA NONOate复合处理、Al3++NO清除剂cPTIO复合处理)对茶苗Al3+含量、NO含量、NOS活性、丙二醛含量、游离脯氨酸含量、抗氧化酶活性等指标的影响。结果表明,外源添加Al3+促进了茶树体内Al3+的累积;外源NO作为一种正调控因子参与了茶树各组织对Al3+的响应,促进茶树不同组织对Al3+的吸收,增强Al3+给茶苗带来的氧化损伤;而外源添加cPTIO则可以有效缓解茶树的Al3+胁迫;外源添加Al3+能够增加NO含量但不显著,与此同时NOS活性有明显提高;此外,Al3+胁迫造成MDA含量增加,也伴随Pro含量及SOD、POD、CAT等抗氧化酶活性的提高;积极应对茶树遭受的Al3+胁迫,尤其表现在Al3++NO复合处理中。综上,降低茶树的NO含量可调节茶树体内Al3+水平,缓解茶树的Al3+胁迫,期待本研究结果可为茶树降铝措施的研发提供新参考。
Abstract:
-

参考文献/References:

[1]Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:237-260.
[2]Matsumoto H,Hirasawa E,Morimura S,et al. Localization of aluminium in tea leaves[J]. Plant and Cell Physiology,1976,17(3):627-631.
[3]Sun L L,Zhang M S,Liu X M,et al. Aluminium is essential for root growth and development of tea plants (Camellia sinensis)[J]. Journal of Integrative Plant Biology,2020,62(7):984-997.
[4]王敏,宁秋燕,石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学,2017,37(4):356-362.
[5]罗亮,谢忠雷,刘鹏,等. 茶树对铝毒生理响应的研究[J]. 农业环境科学学报,2006,25(2):305-308.
[6]徐圆圆,陆明英,蒋维昕,等. 铝胁迫下不同耐铝型桉树无性系根和叶抗氧化特征的差异[J]. 浙江农林大学学报,2016,33(6):1009-1016.
[7]于翠平,潘志强,陈杰,等. 铝对茶树生长与生理特性影响的研究[J]. 植物营养与肥料学报,2012,18(1):182-187.
[8]黄媛,段小华,胡小飞,等. 模拟酸雨和铝调控对茶叶主要化学品质与铝积累的影响[J]. 热带亚热带植物学报,2011,19(3):254-259.
[9]蘧苗苗,陈银萍,苏向楠,等. 镉胁迫下紫花苜蓿幼苗内源一氧化氮和活性氧的生成[J]. 广西植物,2016,36(12):1483-1491,1482.
[10]Shao R X,Wang K B,Shangguan Z P,et al. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal:probed by ESR spectroscopy and fast OJIP fluorescence rise[J]. Journal of Plant Physiology,2010,167(6):472-479.
[11]Wang Y S,Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.[J]. Plant and Cell Physiology,2005,46(12):1915-1923.
[12]Zhang H,Li Y H,Hu L Y,et al. Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress[J]. Russian Journal of Plant Physiology,2008,55(4):469-474.
[13]Wang H H,Huang J J,Bi Y R,et al. Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots[J]. Plant Science,2010,179(3):281-288.
[14]Ghanati F,Morita A,Yokota H. Effects of aluminum on the growth of tea plant and activation of antioxidant system[J]. Plant and Soil,2005,276(1/2):133-141.
[15]Wang Y H,Li X C,Zhu G Q,et al. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro[J]. PLoS One,2012,7(12):e52436.
[16]李合生. 植物生理生化试验原理和技术[M]. 北京:高等教育出版社,2000.
[17]马小雪,肖斌,闫列娟,等. 不同酸度下外源铝对茶叶铝含量及品质的影响[J]. 西北农林科技大学学报(自然科学版),2012,40(11):187-191,196.
[18]黄春琼,陈振,崔蓉菁,等. 铝胁迫对狗牙根种质资源营养元素吸收的影响[J]. 热带作物学报,2020,41(6):1092-1099.
[19]Jones D L,Kochian L V. Aluminum inhibition of the inositol 1,4,5-trisphosphate signal transduction pathway in wheat roots:a role in aluminum toxicity?[J]. The Plant Cell,1995,7(11):1913-1922.
[20]Barceló J,Poschenrieder C. Fast root growth responses,root exudates,and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance:a review[J]. Environmental and Experimental Botany,2002,48(1):75-92.
[21]侯文娟. 外源磷和一氧化氮施加对桉树幼苗酸铝胁迫的调控[D]. 南宁:广西大学,2016.
[22]Singh N,Bhatla S C. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons[J]. Nitric Oxide,2016,53:54-64.
[23]Wang J W,Zheng L P,Wu J Y,et al. Involvement of nitric oxide in oxidative burst,phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures[J]. Nitric Oxide,2006,15(4):351-358.
[24]朱利君,苏智先,胡进耀,等. 珍稀濒危植物珙桐过氧化物酶活性和丙二醛含量[J]. 生态学杂志,2009,28(3):451-455.
[25]郑开敏,肖家昶,马俊英,等. 柠檬酸对铝胁迫下豆瓣菜生长及生理的影响[J]. 江苏农业学报,2022,38(2):476-485.
[26]疏再发. 根系有机酸和细胞壁果胶甲酯化参与茶树耐铝/解铝毒机制的研究[D]. 南京:南京农业大学,2016.
[27]周圆. 一氧化氮和根系分泌物在植物铝毒害和耐铝机制中的作用[D]. 杭州:浙江大学,2012.
[28]鲍雅静,季静,王迪,等. 不同品种金银花叶片中脯氨酸对盐胁迫的响应[J]. 安徽农业科学,2011,39(8):4502-4503.
[29]Hajiboland R,Bahrami Rad S,Barceló J,et al. Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science,2013,176(4):616-625.
[30]徐勤松,施国新,周红卫,等. Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响[J]. 生态学杂志,2003,22(1):5-8.
[31]Mukhopadyay M,Bantawa P,Das A,et al. Changes of growth,photosynthesis and alteration of leaf antioxidative defence system of tea[Camellia sinensis (L.) O.Kuntze]seedlings under aluminum stress[J]. BioMetals,2012,25(6):1141-1154.
[32]黄丹娟,毛迎新,陈勋,等. 茶树富集铝的特点及耐铝机制研究进展[J]. 茶叶科学,2018,38(2):125-132.

相似文献/References:

[1]李金,魏艳丽,庞磊,等.茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J].江苏农业科学,2013,41(10):21.
 Li Jin,et al.Differences in expression of TCS1、TIDH and SAMS genes in caffeine synthetic route of Camellia Sinensis and their correlation with caffeine contents[J].Jiangsu Agricultural Sciences,2013,41(7):21.
[2]崔雪梅,简君萌,李春生.铝胁迫对油菜根系及叶片生理生化指标的影响[J].江苏农业科学,2015,43(12):107.
 Cui Xuemei,et al.Effects of aluminum stress on physiological and biochemical indices of rapeseed roots and leaves[J].Jiangsu Agricultural Sciences,2015,43(7):107.
[3]朱韦京,余树全,汪赛,等.不同酸雨作用方式对茶树幼苗生长与光合特征参数的影响[J].江苏农业科学,2014,42(10):232.
 Zhu Weijing,et al.Effects of different acid rain action modes on growth and photosynthetic parameters of Camellia sinensis seedlings[J].Jiangsu Agricultural Sciences,2014,42(7):232.
[4]李荣林,李珍珍,杨亦扬,等.以诱导抗性为基础的茶树病虫害控制新技术[J].江苏农业科学,2013,41(11):145.
 Li Ronglin,et al.New diseases and insect pests control techniques for tea tree based on induced resistance[J].Jiangsu Agricultural Sciences,2013,41(7):145.
[5]王雪萍,龚自明,高士伟,等.ABT1号生根粉对茶树穴盘扦插生根的影响[J].江苏农业科学,2013,41(11):277.
 Wang Xueping,et al.Effect of rooting powder ABT1 on rooting of tea tree plug seedlings[J].Jiangsu Agricultural Sciences,2013,41(7):277.
[6]周萌,李友勇,孙雪梅,等.基于EST-SSR标记的云南野生茶树遗传多样性分析[J].江苏农业科学,2013,41(12):22.
 Zhou Meng,et al.Genetic diversity analysis of wild tea trees in Yunnan Province based on EST-SSR markers[J].Jiangsu Agricultural Sciences,2013,41(7):22.
[7]杨亦扬,胡雲飞,李荣林,等.不同茶树品种的碧螺春茶适制性[J].江苏农业科学,2015,43(09):219.
 Yang Yiyang,et al.Study on processing suitability of Biluochun tea from different tea plant varieties[J].Jiangsu Agricultural Sciences,2015,43(7):219.
[8]孟丹,刘玲,陈露,等.外源硫化氢对铝胁迫下水稻幼苗生长及生理生化的影响[J].江苏农业科学,2014,42(06):63.
 Meng Dan,et al.Effects of exogenous hydrogen sulfide on growth and physiology of rice seedlings under aluminum stress[J].Jiangsu Agricultural Sciences,2014,42(7):63.
[9]胡雲飞,杨亦扬,李荣林,等.不同时段喷施叶面肥对春茶新梢生长与品质的影响[J].江苏农业科学,2015,43(07):170.
 Hu Yunfei,et al.Effects of sparying foliage fertilizer at different times on growth and quality of fresh tea new shoots[J].Jiangsu Agricultural Sciences,2015,43(7):170.
[10]李荣林,杨亦扬,胡雲飞,等.茶树的抗虫性和抗性育种研究[J].江苏农业科学,2015,43(05):1.
 Li Rongling,et al.Study on insect resistance and stress-resistance breeding of tea plant[J].Jiangsu Agricultural Sciences,2015,43(7):1.

备注/Memo

备注/Memo:
收稿日期:2022-06-02
基金项目:国家自然科学基金(编号:31972458);江苏现代农业(茶叶)产业技术体系项目(编号:JATS[2022]458);常州市科技支撑计划(编号:CE20212002);江苏省农业重大技术协同推广计划试点项目(编号:2020-SJ-047-02-1)。
作者简介:邢安琪(1994—),女,河南安阳人,博士研究生,主要从事茶树栽培育种研究。E-mail:2020204039@stu.njau.edu.cn。
通信作者:王玉花,博士,教授,主要从事茶树栽培育种研究。E-mail:wangyuhua@njau.edu.cn。
更新日期/Last Update: 2023-04-05