|本期目录/Table of Contents|

[1]赵嘉威,田光兆,邱畅,等.基于改进YOLOv4算法的苹果叶片病害检测方法[J].江苏农业科学,2023,51(9):193-199.
 Zhao Jiawei,et al.Detection method of apple leaf diseases based on improved YOLOv4 algorithm[J].Jiangsu Agricultural Sciences,2023,51(9):193-199.
点击复制

基于改进YOLOv4算法的苹果叶片病害检测方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第9期
页码:
193-199
栏目:
农业工程与信息技术
出版日期:
2023-05-05

文章信息/Info

Title:
Detection method of apple leaf diseases based on improved YOLOv4 algorithm
作者:
赵嘉威12田光兆12邱畅12刘钦3陈晨12谢尚杰12
1.南京农业大学工学院,江苏南京 210031; 2.江苏省智能化农业装备重点实验室,江苏南京 210031;3.东南大学,江苏南京 210096
Author(s):
Zhao Jiaweiet al
关键词:
MC-YOLOv4算法苹果叶片病害检测卷积神经网络注意力机制
Keywords:
-
分类号:
TP391.4
DOI:
-
文献标志码:
A
摘要:
准确识别苹果叶片病害种类以进行及时防治对于苹果增量增产具有重要的意义,为解决同时检测苹果叶片多种病害目标结果不准确的问题,提出一种改进的YOLOv4目标检测算法(MC-YOLOv4)对苹果叶片常见的5种病害(斑点落叶病、褐斑病、灰斑病、花叶病、锈病)进行检测。为方便迁移到移动终端,首先,该算法将YOLOv4网络结构中的主干特征提取网络CSPDarknet53换成了轻量级的MobileNetV3网络,并在加强特征提取网络结构中引入深度可分离卷积代替传统卷积;其次,为提高检测精度,将卷积注意力机制模块CBAM融合至PANet结构中,可增强对有用特征信息的提取;最后,为了使锚框更适应本研究的数据集,通过K-means聚类算法将模型的锚框信息更新。结果表明,MC-YOLOv4模型在检测中的平均精度为97.25%,单张图像平均检测时间为13.3 ms,权重文件大小为55.5 MB。MC-YOLOv4模型对于同时检测苹果叶片多种病害目标的问题上具有识别速度快、识别精准度高、可靠性强等特点,该研究为苹果叶片的病害检测提供了一种更优的方法,有助于实现精准施药,提高苹果的产量和品质。
Abstract:
-

参考文献/References:

[1]王璇,刘军弟,邵砾群,等. 我国苹果产业年度发展状况及其趋势与建议[J]. 中国果树,2018(3):101-104,108.
[2]李保华,王彩霞,董向丽.我国苹果主要病害研究进展与病害防治中的问题[J]. 植物保护,2013,39(5):46-54.
[3]顾宝兴,刘钦,田光兆,等. 基于改进YOLOv3的果树树干识别和定位[J]. 农业工程学报,2022,38(6):122-129.
[4]张漫,季宇寒,李世超,等. 农业机械导航技术研究进展[J]. 农业机械学报,2020,51(4):1-18.
[5]袁祥州,黄恩临. 欧盟智慧农业发展经验及其借鉴[J]. 世界农业,2022(5):27-36.
[6]Xu J Y,Gu B X,Tian G Z. Review of agricultural IoT technology[J]. Artificial Intelligence in Agriculture,2022,6:10-22.
[7]余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9):1799-1804.
[8]张慧春,周宏平,郑加强,等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报,2020,51(3):1-17.
[9]Zhong Y,Zhao M. Research on deep learning in apple leaf disease recognition[J]. Computers and Electronics in Agriculture,2020,168:105146.
[10]Bi C K,Wang J M,Duan Y L,et al. MobileNet based apple leaf diseases identification[J]. Mobile Networks and Applications,2022,27(1):172-180.
[11]文斌,曹仁轩,杨启良,等. 改进YOLOv3算法检测三七叶片病害[J]. 农业工程学报,2022,38(3):164-172.
[12]Girshick R,Donahue J,Darrell T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[13]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[14]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[M]//Computer vision-ECCV 2016.Cham:Springer International Publishing,2016:21-37.
[15]王相友,李晏兴,杨振宇,等. 基于改进YOLOv4模型的马铃薯中土块石块检测方法[J]. 农业机械学报,2021,52(8):241-247,262.
[16]李菊霞,李艳文,牛帆,等. 基于YOLOv4的猪只饮食行为检测方法[J]. 农业机械学报,2021,52(3):251-256.
[17]刘莫尘,高甜甜,马宗旭,等. 基于MSRCR-YOLOv4-tiny的田间玉米杂草检测模型[J]. 农业机械学报,2022,53(2):246-255,335.
[18]王巧华,顾伟,蔡沛忠,等. 基于改进YOLOv4的群体棉种双面破损检测方法[J]. 农业机械学报,2022,53(1):389-397.
[19]吴雪,宋晓茹,高嵩,等. 基于深度学习的目标检测算法综述[J]. 传感器与微系统,2021,40(2):4-7,18.
[20]Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. (2004-01-09)[2022-09-10].https://arxiv.org/abs/2004.10934.
[21]张兆国,张振东,李加念,等. 采用改进Yolov4模型检测复杂环境下马铃薯[J]. 农业工程学报,2021,37(22):170-178.
[22]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

相似文献/References:

[1]贾永华,李晓龙,牛锐敏,等.叶面喷锌对苹果叶片生长及产量品质的影响[J].江苏农业科学,2014,42(12):218.
 Jia Yonghua,et al.Effects of spraying zinc on leaves on leaf growth , yield and quality of apple[J].Jiangsu Agricultural Sciences,2014,42(9):218.
[2]里程辉,刘志,王宏,等.不同化学疏花剂对岳帅苹果疏花疏果及果实品质的影响[J].江苏农业科学,2014,42(11):180.
 Li Chenghui,et al(80).Effects of different chemical flower thinners on flower thinning and fruit quality of apple “Yueshuai”[J].Jiangsu Agricultural Sciences,2014,42(9):180.
[3]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
 Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(9):151.
[4]李敏,厉恩茂,李壮,等.氨基酸钙叶面微肥对苹果缺素症的矫正及果实品质的影响[J].江苏农业科学,2013,41(11):180.
 Li Min,et al.Effects of calcium amino acid foliar fertilizer on apple element deficiency disease and fruit quality[J].Jiangsu Agricultural Sciences,2013,41(9):180.
[5]王贵平,王金政,薛晓敏,等.晚秋叶施高浓度尿素对苹果落叶及贮藏氮素的影响[J].江苏农业科学,2014,42(01):140.
 Wang Guiping,et al.Effects of high concentrations of foliar applied urea on defoliation and nitrogen storage of apple in late autumn[J].Jiangsu Agricultural Sciences,2014,42(9):140.
[6]宋哲,王宏,于年文,等.间伐、控冠处理对乔化凉香苹果树光合速率和果实产质量的影响[J].江苏农业科学,2016,44(05):290.
 Song Zhe,et al.Effects of thinning and crown control on photosynthesis and fruit yield and quality of Liangxiang apple trees[J].Jiangsu Agricultural Sciences,2016,44(9):290.
[7]黄金凤,王冬梅,闫忠业,等.苹果遗传图谱的构建与QTL定位研究进展[J].江苏农业科学,2016,44(02):4.
 Huang Jinfeng,et al.Construction of genetic map of apple and research progress of QTL localization[J].Jiangsu Agricultural Sciences,2016,44(9):4.
[8]苏律,宋俊霞,胡同乐,等.铁肥不同施用方式对苹果缺铁黄化病的矫正效果[J].江苏农业科学,2016,44(01):188.
 Su Lü,et al.Corrective effect of iron fertilizer with different fertilization methods on iron chlorosis of apple tree[J].Jiangsu Agricultural Sciences,2016,44(9):188.
[9]李静,宋飞虎,浦宏杰,等.苹果控制排湿压力微波干燥模型研究[J].江苏农业科学,2015,43(11):529.
 Li Jing,et al.Study on mathematical modeling of apple microwave drying under different moisture pressures[J].Jiangsu Agricultural Sciences,2015,43(9):529.
[10]廖春丽,王衡,李亚平,等.L-半胱氨酸及金属离子对马铃薯、苹果、甘薯多酚氧化酶活性的影响[J].江苏农业科学,2015,43(11):375.
 Liao Chunli,et al.Effects of L-cysteine and metal ions on activity of polyphenol oxidase from potato,apple and sweet potato[J].Jiangsu Agricultural Sciences,2015,43(9):375.

备注/Memo

备注/Memo:
收稿日期:2022-06-24
基金项目:国家自然科学基金青年科学基金(编号:31401291)。
作者简介:赵嘉威(1999—),男,吉林长春人,硕士研究生,主要从事农业智能装备研究。E-mail:zjw991012@126.com。
通信作者:田光兆,博士,副教授,研究生导师,主要从事农业智能装备研究。E-mail:tgz@njau.edu.cn。
更新日期/Last Update: 2023-05-05