|本期目录/Table of Contents|

[1]朱广龙,武启迪,钱寅森,等.盐分胁迫对高粱生长与生理特征的影响及耐盐调控机理研究进展[J].江苏农业科学,2023,51(14):49-57.
 Zhu Guanglong,et al.Research progress on effects of salt stress on growth and physiological characteristics of sorghum and regulation mechanism of salt tolerance[J].Jiangsu Agricultural Sciences,2023,51(14):49-57.
点击复制

盐分胁迫对高粱生长与生理特征的影响及耐盐调控机理研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第14期
页码:
49-57
栏目:
专论与综述
出版日期:
2023-07-20

文章信息/Info

Title:
Research progress on effects of salt stress on growth and physiological characteristics of sorghum and regulation mechanism of salt tolerance
作者:
朱广龙12武启迪12钱寅森12张网定3任志强4周桂生12
1.扬州大学教育部农业与农产品安全国际合作联合实验室,江苏扬州 225009; 2.江苏省粮食作物现代产业技术协同创新中心,江苏扬州 225009;3.江苏省扬州市气象局,江苏扬州 225009; 4.山西省临县畜牧技术推广站,山西临县 033200
Author(s):
Zhu Guanglonget al
关键词:
盐分胁迫高粱生长特性生理机理耐盐调控
Keywords:
-
分类号:
S514.01
DOI:
-
文献标志码:
A
摘要:
土壤盐渍化严重威胁农业的可持续发展与粮食安全,提高作物的耐盐性开展盐碱地高产栽培至关重要。阐明盐分胁迫影响作物的生理机制是开展作物耐盐生产的基础。高粱(Sorghum bicolor L.)为重要的粮食、饲草和能源作物,具有一定的耐盐能力,在盐碱地的开发利用中应用潜力巨大。综述盐分胁迫对高粱种子萌发过程与萌发生理、根系形态构建与生理活性、植株生长与抗逆生理代谢等的影响,总结种子引发、氮肥运筹、外源生长调节物质等减轻高粱盐分胁迫的调控途径与生理机制,绘制盐分胁迫对高粱生长与生理特征的影响及耐盐调控机理的网络图,并讨论存在的问题及今后的研究重点,以期对高粱等作物的耐盐机理与耐盐调控机制获得新认识,进而为耐盐作物品种的选育和耐盐栽培技术的构建提供参考。
Abstract:
-

参考文献/References:

[1]赵可夫,李法曾,樊守金,等. 中国的盐生植物[J]. 植物学通报,1999,16(3):201-207.
[1]王佳丽,黄贤金,钟太洋,等. 盐碱地可持续利用研究综述[J]. 地理学报,2011,66(5):673-684.
[2]孙健,赵宏伟,王敬国,等. 水稻孕穗期剑叶形态和蒸腾特性与耐盐性的关系[J]. 华北农学报,2012,27(6):84-91.
[3]赵立欣,张艳丽,沈丰菊. 能源作物甜高粱及其可供应性研究[J]. 可再生能源,2005,23(4):37-40.
[4]邱晓,张孝峰,林志城,等. 不同含盐量的田间自然土下甜高粱耐盐性初探[J]. 中国农学通报,2012,28(3):66-70.
[5]杨楠,曹亚从,魏兵强,等. 单双子叶植物种子萌发和休眠的研究进展[J]. 植物遗传资源学报,2022,23(5):1249-1257.
[6]尹华军,刘庆. 种子休眠与萌发的分子生物学的研究进展[J]. 植物学通报,2004,21(2):156-163.
[7]Bove J,Jullien M,Grappin P. Functional genomics in the study of seed germination[J]. Genome Biology,2002,3(1):REVIEWS1002.
[8]Jiang Y,Su D R. Models of turfgrass seed germination related to water content[J]. PLoS One,2018,13(10):e0204983.
[9]Papastylianou P,Bakogianni N N,Travlos I,et al. Sensitivity of seed germination to salt stress in black cumin (Nigella sativa L.)[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2018,46(1):202-205.
[10]李林蔚,张双喜,周永斌,等. 大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选[J]. 植物遗传资源学报,2015,16(2):359-363.
[11]刘睿,谢笔钧,潘思轶,等. 高粱种子外种皮中原花青素提取、纯化及其抗氧化活性的研究[J]. 中国粮油学报,2003,18(4)43-47,51.
[12]Patanè C,Cavallaro V,Cosentino S L. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures[J]. Industrial Crops and Products,2009,30(1):1-8.
[13]杨帆,魏晓岑,张士超,等. 不同甜高粱品种萌发期抗盐和抗旱性比较[J]. 植物生理学报,2015,51(10):1604-1610.
[14]高春华,朱金英,张华文,等. 38个粒用高粱品种芽期耐盐性的综合鉴定及评价[J]. 核农学报,2019,33(9):1841-1855.
[15]周桂生,安琳琳,童晨,等. 盐胁迫对甜高粱种子吸水和萌发的影响[J]. 江苏农业科学,2012,40(12):84-86.
[16]周磊,甘毅,欧晓彬,等. 作物缺水补偿节水的分子生理机制研究进展[J]. 中国生态农业学报,2011,19(1):217-225.
[17]程大友,张义,陈丽. 氯化钠胁迫下甜菜种子的萌发[J]. 中国糖料,1996(2):21-23.
[18]Migahid M M,Elghobashy R M,Bidak L M,et al. Priming of Silybum marianum (L.) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress[J]. Heliyon,2019,5(6):e01886.
[19]Ibrahim E A. Seed priming to alleviate salinity stress in germinating seeds[J]. Journal of Plant Physiology,2016,192:38-46.
[20]Chen K T,Arora R. Dynamics of the antioxidant system during seed osmopriming,post-priming germination,and seedling establishment in Spinach (Spinacia oleracea)[J]. Plant Science,2011,180(2):212-220.
[21]高玉坤,杨溥原,项晓冬,等. 不同耐盐高粱品种全生育期对盐胁迫的响应[J]. 华北农学报,2020,35(6):113-121.
[22]Rajkumar,Fakrudin B,Kavil S P,et al. Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench)[J]. Physiology and Molecular Biology of Plants,2013,19(3):409-419.
[23]Farooq M,Gogoi N,Hussain M,et al. Effects,tolerance mechanisms and management of salt stress in grain legumes[J]. Plant Physiology and Biochemistry,2017,118:199-217.
[24]Nimir N E,Zhou G S,Guo W S,et al. Effect of foliar application of CA3,kinetin,and salicylic acid on ions content,membrane permeability and photosynthesis under salt stress of sweet Sorghum[J]. Canadian Journal of Plant Science,2016:CJPS-2016.
[25]Rahnama A,Fakhri S,Meskarbashee M. Root growth and architecture responses of bread wheat cultivars to salinity stress[J]. Agronomy Journal,2019,111(6):2991-2998.
[26]肖雯,张振霞,贾恢先. 几种盐地植物根解剖结构的研究[J]. 甘肃农业大学学报,1998(1):90-93.
[27]於丽华,王宇光,康杰,等. 盐胁迫对甜菜植株显微结构影响的初步研究[J]. 中国农学通报,2018,34(34):14-19.
[28]West G,Inzé D,Beemster G T S. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress[J]. Plant Physiology,2004,135(2):1050-1058.
[29]吴杨,高慧纯,张必弦,等. 24-表油菜素内酯对盐碱胁迫下大豆生育、生理及细胞超微结构的影响[J]. 中国农业科学,2017,50(5):811-821.
[30]潘雄波,向丽霞,胡晓辉,等. 外源亚精胺对盐碱胁迫下番茄幼苗根系线粒体功能的影响[J]. 应用生态学报,2016,27(2):491-498.
[31]敖雁,宋旭东,安琳琳,等. 盐分胁迫及外源CA3调节对甜高粱幼苗生长的影响[J]. 扬州大学学报(农业与生命科学版),2016,37(4):77-83.
[32]李海云,董志敏,袁翠平. NaCl对甜高粱种子萌发和幼苗生长的影响[J]. 吉林农业科学,2015,40(2):19-23.
[33]王宝山,邹琦,赵可夫. 高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值[J]. 西北植物学报,1997,17(3):279-285.
[34]李俊贞,何乐祖,赵春梅,等. 盐胁迫对黄果厚壳桂幼苗荧光和生理特性的影响[J]. 山西农业科学,2021,49(8):919-923.
[35]付丽,刘加珍,陶宝先,等. 盐生植物对盐渍土壤环境的适应机制研究综述[J]. 江苏农业科学,2021,49(15):32-39.
[36]Capula-Rodríguez R,Valdez-Aguilar L A,Cartmill D L,et al. Supplementary calcium and potassium improve the response of tomato (Solanum lycopersicum L.) to simultaneous alkalinity,salinity,and boron stress[J]. Communications in Soil Science and Plant Analysis,2016,47(4):505-511.
[37]Wani S H,Kumar V,Khare T,et al. Engineering salinity tolerance in plants:progress and prospects[J]. Planta,2020,251(4):76.
[38]de Lacerda C F,Cambraia J,Oliva M A,et al. Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress[J]. Brazilian Journal of Plant Physiology,2003,15(2):113-118.
[39]Chaugool J,Naito H,Kasuga S,et al. Comparison of young seedling growth and sodium distribution among Sorghum plants under salt stress[J]. Plant Production Science,2013,16(3):261-270.
[40]Wang T T,Ren Z J,Liu Z Q,et al. SbHKT1;4,a member of the high-affinity potassium transporter gene family from Sorghum bicolor,functions to maintain optimal Na+/K+balance under Na+ stress[J]. Journal of Integrative Plant Biology,2014,56(3):315-332.
[41]de Souza Miranda R,Gomes-Filho E,Prisco J T,et al. Ammonium improves tolerance to salinity stress in Sorghum bicolor plants[J]. Plant Growth Regulation,2016,78(1):121-131.
[42]de Souza Miranda R,Mesquita R O,Costa J H,et al. Integrative control between proton pumps and SOS1 antiporters in roots is crucial for maintaining low Na+ accumulation and salt tolerance in ammonium-supplied Sorghum bicolor[J]. Plant and Cell Physiology,2017,58(3):522-536.
[43]田晓艳,刘延吉,郭迎春. 盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响[J]. 草业科学,2008,25(10):34-38.
[44]刘华,舒孝喜,赵银,等. 盐胁迫对碱茅生长及碳水化合物含量的影响[J]. 草业科学,1997,14(1):18-19,22.
[45]刘海波,魏玉清,周维松,等. NaCl胁迫对萌发期甜高粱和春小麦生理生化特性的影响[J]. 江苏农业科学,2016,44(8):106-111.
[46]田甜,王海江,王金刚,等. 盐胁迫下施加氮素对饲用油菜有机渗透调节物质积累的影响[J]. 草业学报,2021,30(10):125-136.
[47]Zhang F,Sapkota S,Neupane A. Effect of salt stress on growth and physiological parameters of sorghum genotypes at an early growth stage[J]. Indian Journal of Experimental Biology,2020,58(6):404-411.
[48]Mulaudzi T,Hendricks K,Mabiya T,et al. Calcium improves germination and growth of Sorghum bicolor seedlings under salt stress[J]. Plants,2020,9(6):730.
[49]Huang R D.Research progress on plant tolerance to soil salinity and alkalinity in sorghum[J]. Journal of Integrative Agriculture,2018,17(4):739-746.
[50]秦峰梅,张红香,武祎,等. 盐胁迫对黄花苜蓿发芽及幼苗生长的影响[J]. 草业学报,2010,19(4):71-78.
[51]时振振,李胜,杨柯,等. 盐胁迫下豌豆幼苗对内外源NO的生理生化响应[J]. 草业学报,2014,23(5):193-200.
[52]孙璐,黄瑞冬. 高粱幼苗保护酶系统对盐胁迫的初期响应[J]. 沈阳农业大学学报,2014,45(2):134-137.
[53]Nimir N E,Zhou G S,Guo W S,et al. Effect of foliar application of CA3,kinetin,and salicylic acid on ions content,membrane permeability and photosynthesis under salt stress of sweet Sorghum[J]. Canadian Journal of Plant Science,2016:CJPS-2016.
[54]Maiti R K,de la Rosa-Ibarra M,Sandoval N D.Genotypic variability in glossy Sorghum lines for resistance to drought,salinity and temperature stress at the seedling stage[J]. Journal of Plant Physiology,1994,143(2):241-244.
[55]朱亚,赵永平,王致和,等. 盐胁迫对不同品种甜高粱种子萌发和幼苗生理特性的影响[J]. 江西农业学报,2017,29(7):9-13.
[56]孙璐,黄瑞冬. 高粱幼苗保护酶系统对盐胁迫的初期响应[J]. 沈阳农业大学学报,2014,45(2):134-137.
[57]Yin L N,Wang S W,Tanaka K,et al. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.[J]. Plant,Cell & Environment,2016,39(2):245-258.
[58]孙璐,周宇飞,李丰先,等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响[J]. 中国农业科学,2012,45(16):3265-3272.
[59]Hoshida H,Tanaka Y,Hibino T,et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Molecular Biology,2000,43(1):103-111.
[60]Yang Y Q,Guo Y. Unraveling salt stress signaling in plants[J]. Journal of Integrative Plant Biology,2018,60(9):796-804.
[61]Wang H,Liang L Y,Liu B X,et al. Arbuscular mycorrhizas regulate photosynthetic capacity and antioxidant defense systems to mediate salt tolerance in maize[J]. Plants,2020,9(11):1430.
[62]尹美强,王栋,王金荣,等. 外源一氧化氮对盐胁迫下高粱种子萌发及淀粉转化的影响[J]. 中国农业科学,2019,52(22):4119-4128.
[63]Rajabi D A,Zahedi M,Ludwiczak A,et al. Effect of salinity on seed germination and seedling development of sorghum [Sorghum bicolor (L.) moench]genotypes[J]. Agronomy,2020,10(6):859.
[64]王彩娟,李志强,王晓琳,等. 室外盆栽条件下盐胁迫对甜高粱光系统Ⅱ活性的影响[J]. 作物学报,2011,37(11):2085-2093.
[65]李旭新,刘炳响,郭智涛,等. NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化[J]. 应用生态学报,2013,24(9):2479-2484.
[66]马翠兰. 柚(Citrus grandis Osbeck)对盐胁迫的生理反应及适应性研究[D]. 福州:福建农林大学,2002.
[67]Farooq M,Basra S M A,Ahmad N,et al. Enhancing the performance of transplanted coarse rice by seed priming[J]. Paddy and Water Environment,2009,7(1):55-63.
[68]张康康,侯丹平,谭金松,等. 种子引发技术及其提高抗旱性的机制[J]. 耕作与栽培,2021,41(3):38-44,53.
[69]朱广龙,宋成钰,于林林,等. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报,2018,44(11):1713-1724.
[70]Patanè C,Cavallaro V,Cosentino S L. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures[J]. Industrial Crops and Products,2009,30(1):1-8.
[71]马金虎,王宏富,王玉国,等. 种子引发对高粱幼苗耐盐性的生理效应[J]. 中国农业科学,2009,42(10):3713-3719.
[72]杨春武,李长有,尹红娟,等. 小冰麦(Triticum aestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应[J]. 作物学报,2007,33(8):1255-1261.
[73]Chen X F,Zhang R D,Xing Y F,et al. The efficacy of different seed priming agents for promoting sorghum germination under salt stress[J]. PLoS One,2021,16(1):e0245505.
[74]Abid M,Hakeem A,Shao Y H,et al. Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.)[J]. Environmental and Experimental Botany,2018,145:12-20.
[75]孟国花. 不同氮磷钾水平对盐胁迫下甜高粱生长的影响[D]. 济南:山东师范大学,2012:22-29.
[76]James R A,Munns R,von Caemmerer S,et al. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+,K+ and Cl- in salt-affected barley and durum wheat[J]. Plant,Cell & Environment,2006,29(12):2185-2197.
[77]de Souza M R,Alvarez-Pizarro J C,Araújo C M S,et al. Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants[J]. Acta Physiologiae Plantarum,2013,35(3):841-852.
[78]赵军,许泽宏. 不同氮形态对盐胁迫下玉米生长及生理特性的影响[J]. 江苏农业科学,2022,50(11):82-90.
[79]Kopyra M,Gwóz'dz' E A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus[J]. Plant Physiology and Biochemistry,2003,41(11/12):1011-1017.
[80]王旺田,谢光辉,刘文瑜,等. 外源NO对盐胁迫下甜高粱种子萌发和幼苗生长的影响[J]. 核农学报,2019,33(2):363-371.
[81]刘开力,韩航如,徐颖洁,等. 外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用[J]. 中国水稻科学,2005,19(4):333-337.
[82]钟雪梅,代其林,马明莉,等. 外源NO浸种对NaCl胁迫下油菜种子萌发和幼苗生长的影响[J]. 江苏农业科学,2016,44(3):102-106.
[83]闫永庆,赵奕翔,杜玉玲,等. 外源NO对盐胁迫下玉竹氧化损伤缓解效应[J]. 东北农业大学学报,2017,48(1):23-32.
[84]狄红艳. 一氧化氮对盐胁迫下玉米种子萌发及幼苗生长的影响[J]. 农业科学研究,2017,38(4):20-23.
[85]班月圆. 盐胁迫对不同地域桑种子萌发的影响及外源GA3和钙的缓解效应研究[D]. 镇江:江苏科技大学,2017:35-36.
[86]单皓,张虎,崔爱民,等. 外源生长调节物质对盐胁迫下玉米种子萌发的影响[J]. 中国农业科技导报,2018,20(8):82-90.
[87]Blázquez M A,Nelson D C,Weijers D.Evolution of plant hormone response pathways[J]. Annual Review of Plant Biology,2020,71:327-353.
[88]Amzallag G N,Lerner H R,Poljakoff-Mayber A.Exogenous ABA as a modulator of the response of Sorghum to high salinity[J]. Journal of Experimental Botany,1990,41(12):1529-1534.
[89]Rabbani M A,Maruyama K,Abe H,et al. Monitoring expression profiles of rice genes under cold,drought,and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses[J]. Plant Physiology,2003,133(4):1755-1767.
[90]屈海泳,刘连妹,王艳伶,等. 赤霉素打破洋葱种子休眠的效果及其对洋葱生长发育的影响[J]. 江苏农业科学,2008,36(2):130-132.
[91]Maggio A,Barbieri G,Raimondi G,et al. Contrasting effects of CA3 treatments on tomato plants exposed to increasing salinity[J]. Journal of Plant Growth Regulation,2010,29(1):63-72.
[92]申国柱,刘湘永,申仕康,等. 6-BA和NAA对茶梨种子发芽特性的影响[J]. 种子,2008,27(3):73-74.
[93]廖祥儒,贺普超,朱新产. 玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响[J]. 植物学报,1997,39(7):641-646.
[94]Amzallag G N,Lerner H R,Poljakoff-Mayber A. Interaction between mineral nutrients,cytokinin and gibberellic acid during growth of Sorghum at high NaCl salinity[J]. Journal of Experimental Botany,1992,43(1):81-87.
[95]Wang Y N,Li K X,Li X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana[J]. Journal of Plant Physiology,2009,166(15):1637-1645.

相似文献/References:

[1]彭陈,何晓兰,黄益洪,等.高粱链格孢叶斑病病原菌鉴定[J].江苏农业科学,2014,42(11):165.
 Peng Chen,et al().Identification of pathogen of Alternaria leaf spot in sorghum[J].Jiangsu Agricultural Sciences,2014,42(14):165.
[2]王爱霞,方炎明.NaCl胁迫对不同种源构树种子萌发及幼苗生长的影响[J].江苏农业科学,2016,44(08):257.
 Wang Aixia,et al.Effects of NaCl stress on seed germination and seedling growth of different Broussonetia papyrifera provenances[J].Jiangsu Agricultural Sciences,2016,44(14):257.
[3]杨倩,衡静.盐分胁迫条件下不同苗木耐盐能力的熵权系数评价[J].江苏农业科学,2014,42(04):135.
 Yang Qian,et al.Evaluation of entropy weight coefficient for salt tolerance of different tree seedlings under salt stress[J].Jiangsu Agricultural Sciences,2014,42(14):135.
[4]李祥栋,张明生,王洋,等.贵州优质酒用高粱Waxy基因的鉴定分析[J].江苏农业科学,2014,42(05):39.
 Li Xiangdong,et al.Identification and analysis of Waxy gene in brewing sorghum from Guizhou Province[J].Jiangsu Agricultural Sciences,2014,42(14):39.
[5]明红梅,陈蒙恩,周健,等.呷酒酿造新工艺[J].江苏农业科学,2015,43(08):260.
 Ming Hongmei,et al.Study on new brewing technology of Za wine[J].Jiangsu Agricultural Sciences,2015,43(14):260.
[6]卢峰,张飞.矮壮素对高粱群体微环境及光合物质积累的调节作用[J].江苏农业科学,2015,43(08):79.
 Lu Feng,et al.Regulating effect of chlormequat chloride on micro-environment and accumulation of photosynthetic materials of sorghum population[J].Jiangsu Agricultural Sciences,2015,43(14):79.
[7]李志华,王艳秋,邹剑秋.中国高粱品种资源分析与再利用[J].江苏农业科学,2015,43(06):109.
 Li Zhihua,et al.Re-utilization and analysis of Chinas sorghum varieties resources[J].Jiangsu Agricultural Sciences,2015,43(14):109.
[8]石瑞,杨丽丽,刘树楠,等.外源NO对NaCl胁迫下高粱幼苗生理响应的调节[J].江苏农业科学,2016,44(08):139.
 Shi Rui,et al.Regulating effect of exogenous NO on physiological response of sorghum seedlings under NaCl stress[J].Jiangsu Agricultural Sciences,2016,44(14):139.
[9]刁锐琦,胡云.不同氮浓度对高粱苗期生长特性及土壤性质的影响[J].江苏农业科学,2016,44(09):108.
 Diao Ruiqi,et al.Effects of different nitrogen concentrations on seedling growth characteristics and soil properties of sorghum[J].Jiangsu Agricultural Sciences,2016,44(14):108.
[10]朱凯,张飞,柯福来,等.机械化高粱芽苗形态建成及生理特性对保水剂的响应[J].江苏农业科学,2016,44(10):161.
 Zhu Kai,et al.Response of morphogenesis and physiological characteristics of mechanized sorghum at seedling stage to water-retaining agent[J].Jiangsu Agricultural Sciences,2016,44(14):161.

备注/Memo

备注/Memo:
收稿日期:2022-09-15
基金项目:国家重点研发计划(编号:2022YFE0113400、2018YFE0108100);江苏省碳达峰碳中和科技创新专项资金(编号:BE2022305);江苏省自然科学基金(编号:BK20221371)。
作者简介:朱广龙(1986—),男,甘肃平凉人,博士,助理研究员,主要从事作物栽培与逆境生理研究,E-mail:g.zhu@yzu.edu.cn;共同第一作者:武启迪(1998—),男,江苏淮安人,硕士研究生,主要从事作物逆境生理研究,E-mail:523278429@qq.com。
通信作者:周桂生,博士,教授,主要从事作物绿色栽培与逆境生理研究。E-mail:gszhou@yzu.edu.cn。
更新日期/Last Update: 2023-07-20