|本期目录/Table of Contents|

[1]祁佳峰,郭鹏,刘笑,等.基于无人机高清影像的棉花苗期长势监测及后期长势预测[J].江苏农业科学,2023,51(16):170-178.
 Qi Jiafeng,et al.Study on cotton seedling growth monitoring and later growth prediction based on UAV high-definition images[J].Jiangsu Agricultural Sciences,2023,51(16):170-178.
点击复制

基于无人机高清影像的棉花苗期长势监测及后期长势预测(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第16期
页码:
170-178
栏目:
农业工程与信息技术
出版日期:
2023-08-20

文章信息/Info

Title:
Study on cotton seedling growth monitoring and later growth prediction based on UAV high-definition images
作者:
祁佳峰 郭鹏 刘笑 杜文玲
石河子大学理学院,新疆石河子 832003
Author(s):
Qi Jiafenget al
关键词:
无人机棉花苗期长势监测长势预测
Keywords:
-
分类号:
S127
DOI:
-
文献标志码:
A
摘要:
棉花长势对其产量有重要影响,对3~4叶期棉花长势进行监测并对后期长势进行预测,有利于棉花的田间管理和提高最终产量。本研究利用棉花3~4叶期无人机高清影像进行试验,首先利用绿叶指数(green leaf index,GLI)对棉花苗期影像进行分割,利用ENVI 5.6软件中的农业工具包对棉花幼苗进行提取;然后根据棉花幼苗的直径范围以自然断点法将棉花幼苗依次划分为一等苗、二等苗和三等苗;最后以305像素×305像素为单位面积,以单位面积内甲等苗数量占出苗总数的比例和出苗率乘积的大小实现对棉花后期长势优劣的预测。结果发现,在众多指数中,GLI指数对影像的分割效果最好,可以实现对棉花幼苗的有效提取。试验区共提取棉花37 123株,其中,一等苗11 091株,二等苗21 151株,三等苗4 881株。经不同尺度的重复检验,棉花幼苗的提取精度达95.7%;试验区3~4叶期棉花冠层的平均地表覆盖度为6.54%;长势预测评分结果与2期NDVI相关性的决定系数分别为0.756 9、0.662 1,均方根误差分别为0.077 0、0.900 1。本研究表明,利用棉花苗期长势结合出苗率可对后期长势进行有效预测,但预测精度会随时间的推移逐渐降低,因此本研究中提出的方法更适合对棉花从苗期开始至未来中短期内长势的预测。本研究为棉花长势预测提供一种新的手段,对棉花生长过程中进行人工干预和提高棉花产量具有重要的指导作用。
Abstract:
-

参考文献/References:

[1]戴建国,薛金利,赵庆展,等. 利用无人机可见光遥感影像提取棉花苗情信息[J]. 农业工程学报,2020,36(4):63-71.
[2]田野,张清,李希灿,等. 基于多时相影像的棉花种植信息提取方法研究[J]. 干旱区研究,2017,34(2):423-430.
[3]茶明星,汪小钦,李娅丽,等. 基于遥感数据的新疆开-孔河流域农业区种植结构提取[J]. 干旱区研究,2020,37(2):532-540.
[4]白燕英,高聚林,张宝林. 基于Landsat8影像时间序列NDVI的作物种植结构提取[J]. 干旱区地理,2019,42(4):893-901.
[5]刘晓晨. 基于Landsat8遥感数据的棉花长势快速监测[J]. 新疆农业科技,2015(6):50.
[6]尹捷,周雷雷,李利伟,等. 多源遥感数据小麦识别及长势监测比较研究[J]. 遥感技术与应用,2021,36(2):332-341.
[7]金秀良,李少昆,王克如,等. 基于高光谱特征参数的棉花长势参数监测[J]. 西北农业学报,2011,20(9):73-77.
[8]谢鑫昌,杨云川,田忆,等. 基于遥感的广西甘蔗种植面积提取及长势监测[J]. 中国生态农业学报,2021,29(2):410-422.
[9]Li C C,Li H J,Li J Z,et al. Using NDVI percentiles to monitor real-time crop growth[J]. Computers and Electronics in Agriculture,2019,162:357-363.
[10]Becker-Reshef I,Vermote E,Lindeman M,et al. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data[J]. Remote Sensing of Environment,2010,114(6):1312-1323.
[11]Genovese G,Vignolles C,Nègre T,et al. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting.A case study on Spain[J]. Agronomie,2001,21(1):91-111.
[12]王庆,车荧璞,柴宏红,等. 基于无人机影像的冠层光谱和结构特征监测甜菜长势[J]. 农业工程学报,2021,37(20):90-98.
[13]张瑞杰,李俐俐,李礼,等. 利用无人机影像数据进行油菜长势监测[J]. 测绘地理信息,2021,46(增刊1):227-231.
[14]杨亚莉,向祖恒,黄正明,等. 华榛1年生实生苗质量分级标准的研究[J]. 园艺与种苗,2018,38(1):34-37.
[15]李玛,苏钛,李云,等. 滇重楼种苗质量分级标准研究[J]. 种子,2020,39(5):141-143.
[16]简才源,韦小丽,段如雁,等. 贵州不同区域闽楠裸根苗的生长评价与苗木分级[J]. 贵州农业科学,2015,43(6):153-157.
[17]关参政,申培增. 甘肃枸杞种苗分级标准及其田间验证试验研究[J]. 林业科技通讯,2017(6):29-32.
[18]李亚麒,孙继伟,李建华,等. 不同等级云南松幼苗生物量估测模型[J]. 云南大学学报(自然科学版),2019,41(5):1073-1082.
[19]周新华,黄拯,厉月桥,等. 杉木容器苗分级标准研究[J]. 中南林业科技大学学报,2017,37(9):68-73.
[20]徐权,郭鹏,祁佳峰,等. 基于无人机影像的SEGT棉花估产模型构建[J]. 农业工程学报,2020,36(16):44-51.
[21]郭鹏,武法东,戴建国,等. 基于无人机可见光影像的农田作物分类方法比较[J]. 农业工程学报,2017,33(13):112-119.
[22]汪小钦,王苗苗,王绍强,等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报,2015,31(5):152-159.
[23]康悦,文军,张堂堂,等. 卫星遥感数据评估黄土高原陆面干湿程度研究[J]. 地球物理学报,2014,57(8):2473-2483.
[24]Tian Y C,Yao X,Yang J,et al. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance[J]. Field Crops Research,2011,120(2):299-310.
[25]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988,25(3):295-309.
[26]Rondeaux G,Steven M,Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment,1996,55(2):95-107.
[27]Jiang R,Sanchez-Azofeifa A,Laakso K,et al. UAV-based partially sampling system for rapid NDVI mapping in the evaluation of rice nitrogen use efficiency[J]. Journal of Cleaner Production,2021,289:125705.
[28]Chen J M,Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment,1996,55(2):153-162.
[29]王建光,吕小东,姚贵平,等. 苜蓿和无芒雀麦混播草地高光谱遥感估产研究[J]. 中国草地学报,2013,35(1):35-41.
[30]Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150.
[31]Gitelson A A,Kaufman Y J,Stark R,et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87.
[32]Gunasekara N K,Al-Wardy M M,Al-Rawas G A,et al. Applicability of VI in arid vegetation delineation using shadow-affected SPOT imagery[J]. Environmental Monitoring and Assessment,2015,187(7):454.
[33]肖汉,陈秀万,杨振宇,等. 基于光谱分析的草地叶绿素含量估测植被指数[J]. 光谱学与光谱分析,2014,34(11):3075-3078.
[34]Gitelson A A,Stark R,Grits U,et al. Vegetation and soil lines in visible spectral space:a concept and technique for remote estimation of vegetation fraction[J]. International Journal of Remote Sensing,2002,23(13):2537-2562.
[35]Zhu Y,Yao X,Tian Y C,et al. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice[J]. International Journal of Applied Earth Observation and Geoinformation,2008,10(1):1-10.

相似文献/References:

[1]沙向红,严建萍.低温胁迫对幼苗期棉花根系ADHa与BADH表达的影响[J].江苏农业科学,2013,41(08):37.
 Sha Xianghong,et al.Effect of low temperature stress on expression of ADHa and BADH gene in root of cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(16):37.
[2]池文泽,周斌,盛玮,等.保水剂在棉花生产上的应用[J].江苏农业科学,2013,41(05):73.
 Chi Wenze,et al.Study on application of water retention agent in cotton production[J].Jiangsu Agricultural Sciences,2013,41(16):73.
[3]杨富强,杨长琴,刘瑞显,等.不同生育期渍水对棉花恢复生长及产量的影响[J].江苏农业科学,2014,42(12):108.
 Yang Fuqiang,et al.Effects of waterlogging in different growth stages on recovery growth and yield of cotton[J].Jiangsu Agricultural Sciences,2014,42(16):108.
[4]李玉侠,李家运,李长敏,等.江苏丰县棉花生产变化及植棉技术优化[J].江苏农业科学,2014,42(12):111.
 Li Yuxia,et al.Changes of cotton production and optimization of cotton planting technology in Fengxian County,Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(16):111.
[5]马晓梅,孙杰,李保成,等.新陆早51号棉花器官同伸关系及棉铃空间分布[J].江苏农业科学,2014,42(11):123.
 Ma Xiaomei,et al().Together growth of organs and cotton bolls spatial distribution of cotton cultivar “Xinluzao No.51”[J].Jiangsu Agricultural Sciences,2014,42(16):123.
[6]丁锦平.棉花病毒诱导基因沉默体系构建[J].江苏农业科学,2013,41(06):38.
 Ding Jinping.Establishment of virus induced gene silencing system in cotton[J].Jiangsu Agricultural Sciences,2013,41(16):38.
[7]王义霞,刘春生,苏彦华.新疆棉花品种新陆中51号在山东棉区的需钾特性[J].江苏农业科学,2014,42(10):80.
 Wang Yixia,et al.Potassium requirement characteristics of Xinjiang cotton cultivar “Xinluzhong No.51” in Shandong cotton region[J].Jiangsu Agricultural Sciences,2014,42(16):80.
[8]刘瑞显,张国伟,杨长琴,等.转变现代棉花生产技术研究理念的新视角——基于复杂性科学的思考[J].江苏农业科学,2014,42(10):1.
 Liu Ruixian,et al.A new perspective on ideological changes of cotton productive technological innovation-Based on reflections on complexity science[J].Jiangsu Agricultural Sciences,2014,42(16):1.
[9]陈向阳,陈丽萍,王思乐,等.粗糙集在棉花异性纤维图像去噪中的应用[J].江苏农业科学,2016,44(03):446.
 Chen Xiangyang,et al.Application of rough set in denoising of cotton fiber image[J].Jiangsu Agricultural Sciences,2016,44(16):446.
[10]姚琛,华春,周峰,等.盐碱滩涂植物资源筛选与利用[J].江苏农业科学,2013,41(10):357.
 Yao Chen,et al.Screening and utilization of plant resources cultivated on saline tidal flats[J].Jiangsu Agricultural Sciences,2013,41(16):357.
[11]白志坤,高山,陈兵,等.无人机喷施化学打顶剂对棉花生长发育及产量品质的影响[J].江苏农业科学,2023,51(18):75.
 Bai Zhikun,et al.Impact of spraying chemical topping agent by UAV on growth, yield and quality of cotton[J].Jiangsu Agricultural Sciences,2023,51(16):75.

备注/Memo

备注/Memo:
收稿日期:2022-10-24
基金项目:国家自然科学基金(编号:U2003109);石河子大学高层次人才科研启动资金专项(编号:RCZK2018C15)。
作者简介:祁佳峰(1997—),男,甘肃定西人,硕士研究生,从事农业遥感方向研究。E-mail:qjf626112@163.com。
通信作者:郭鹏,博士,教授,从事农业遥感方向研究。E-mail:gp163@163.com。
更新日期/Last Update: 2023-08-20