|本期目录/Table of Contents|

[1]杨妮,邓树林,樊艳红,等.基于Sentinel-2影像的甘蔗种植区遥感提取方法——以广西崇左市为例[J].江苏农业科学,2024,52(1):172-182.
 Yang Ni,et al.Remote sensing extraction method of sugarcane planting area based on Sentinel-2 image—Taking Chongzuo City as an example[J].Jiangsu Agricultural Sciences,2024,52(1):172-182.
点击复制

基于Sentinel-2影像的甘蔗种植区遥感提取方法——以广西崇左市为例(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第1期
页码:
172-182
栏目:
农业工程与信息技术
出版日期:
2024-01-05

文章信息/Info

Title:
Remote sensing extraction method of sugarcane planting area based on Sentinel-2 image—Taking Chongzuo City as an example
作者:
杨妮12邓树林3樊艳红2谢国雪4
1.中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074;2.广西财经学院管理科学与工程学院,广西南宁 530003;3.南宁师范大学地理科学与规划学院,广西南宁 530001; 4.广西农业科学院农业科技信息研究所,广西南宁 530003
Author(s):
Yang Niet al
关键词:
Sentinel-2甘蔗面积提取机器学习方法喀斯特山区崇左
Keywords:
-
分类号:
S127;P237
DOI:
-
文献标志码:
A
摘要:
为了解决在多云雨天气与复杂地形条件下难以快速精准大面积绘制喀斯特山区甘蔗种植区的问题,亟须探究适用于喀斯特山区甘蔗种植区提取的方法。以广西壮族自治区崇左市为研究区域,利用Sentinel-2数据计算多种植被指数,根据Sentinel-2原始波段、光谱指数和纹理信息特征分析,选取地物训练样本,并引入DEM、土地利用等辅助识别特征变量,采用神经网络、随机森林、支持向量机3种机器学习方法,实现2018—2021年甘蔗种植区遥感提取,再利用Google Earth影像和统计数据进行精度评价。结果表明,基于Sentinel-2的甘蔗种植区遥感提取效果较好,崇左市甘蔗种植区总体分类精度均高于91%,κ系数均大于0.88;3种分类方法提取面积误差均值为-4.84%。2018—2021年,崇左市甘蔗种植面积趋于较平稳状态;主要甘蔗种植区以扶绥县、江州区、龙州县及大新县南部和宁明县北部为主。Sentinel-2数据在识别地类复杂多样、农田极其碎片和多云天气频繁等特点的作物信息方面具有较好潜力。
Abstract:
-

参考文献/References:

[1]Wang J,Xiao X M,Liu L,et al. Mapping sugarcane plantation dynamics in Guangxi,China,by time series Sentinel-1,Sentinel-2 and Landsat images[J]. Remote Sensing of Environment,2020,247:111951.
[2]Cardona C A,Quintero J A,Paz I C. Production of bioethanol from sugarcane bagasse:status and perspectives[J]. Bioresource Technology,2010,101(13):4754-4766.
[3]Mulianga B,Bégué A,Clouvel P,et al. Mapping cropping practices of a sugarcane-based cropping system in Kenya using remote sensing[J]. Remote Sensing,2015,7(11):14428-14444.
[4]谢鑫昌,杨云川,田忆,等. 基于遥感的广西甘蔗种植面积提取及长势监测[J]. 中国生态农业学报(中英文),2021(2):410-422.
[5]郝鹏宇,唐华俊,陈仲新,等. 基于历史增强型植被指数时序的农作物类型早期识别[J]. 农业工程学报,2018,34(13):179-186.
[6]Massey R,Sankey T T,Congalton R G,et al. MODIS phenology-derived,multi-year distribution of conterminous U.S. crop types[J]. Remote Sensing of Environment,2017,198:490-503.
[7]Sidike P,Sagan V,Maimaitijiang M,et al. dPEN:deep progressively expanded network for mapping heterogeneous agricultural landscape using WorldView-3 satellite imagery[J]. Remote Sensing of Environment,2019,221:756-772.
[8]Zhou Z,Huang J F,Wang J,et al. Object-oriented classification of sugarcane using time-series middle-resolution remote sensing data based on AdaBoost[J]. PLoS One,2015,10(11):e0142069.
[9]Jiang H,Li D,Jing W L,et al. Early season mapping of sugarcane by applying machine learning algorithms to sentinel-1A/2 time series data:a case study in Zhanjiang City,China[J]. Remote Sensing,2019,11(7):861.
[10]Verma A K,Garg P K,Hari Prasad K S.Sugarcane crop identification from LISS Ⅳ data using ISODATA,MLC,and indices based decision tree approach[J]. Arabian Journal of Geosciences,2017,10(1):16.
[11]陈燕丽,蒙良莉,黄肖寒,等. 基于SPEI的广西甘蔗生育期干旱时空演变特征分析[J]. 农业工程学报,2019,35(14):149-158.
[12]丁美花,钟仕全,谭宗琨,等. MODIS与ETM数据在甘蔗长势遥感监测中的应用[J]. 中国农业气象,2007,28(2):195-197,211.
[13]何亚娟,潘学标,裴志远,等. 基于SPOT遥感数据的甘蔗叶面积指数反演和产量估算[J]. 农业机械学报,2013,44(5):226-231.
[14]Mulianga B,Bégué A,Simoes M,et al. Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI[J]. Remote Sensing,2013,5(5):2184-2199.
[15]Adami M,Rudorff B F T,Freitas R M,et al. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil[J]. Sustainability,2012,4(4):574-585.
[16]El Hajj M,Bégué A,Guillaume S,et al. Integrating SPOT-5 time series,crop growth modeling and expert knowledge for monitoring agricultural practices-the case of sugarcane harvest on Reunion Island[J]. Remote Sensing of Environment,2009,113(10):2052-2061.
[17]Li Y R,Yang L T. Sugarcane agriculture and sugar industry in China[J]. Sugar Tech,2015,17(1):1-8.
[18]Zhu Q H,Lowe E A,Wei Y A,et al. Industrial symbiosis in China:a case study of the Guitang Group[J]. Journal of Industrial Ecology,2008,11(1):31-42.
[19]谭宗琨,吴良林,丁美花,等. EOS/MODIS数据在广西甘蔗种植信息提取及面积估算的应用[J]. 气象,2007,33(11):76-81.
[20]丁美花,谭宗琨,李辉,等. 基于HJ-1卫星数据的甘蔗种植面积调查方法探讨[J]. 中国农业气象,2012,33(2):265-270.
[21]王久玲,黄进良,王立辉,等. 面向对象的多时相HJ星影像甘蔗识别方法[J]. 农业工程学报,2014,30(11):145-151.
[22]刘吉凯,钟仕全,徐雅,等. 基于多时相GF-1WFV数据的南方丘陵地区甘蔗种植面积提取[J]. 广东农业科学,2014,41(18):149-154.
[23]Drusch M,del Bello U,Carlier S,et al. Sentinel-2:ESAs optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment,2012,120:25-36.
[24]Immitzer M,Vuolo F,Atzberger C.First experience with sentinel-2 data for crop and tree species classifications in central Europe[J]. Remote Sensing,2016,8(3):166.
[25]林陈捷,刘振华,张小媛,等. 基于红边指数的耕地质量遥感制图[J]. 江苏农业科学,2022,50(20):233-240.
[26]Korhonen L,Packalen P,Rautiainen M.Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index[J]. Remote Sensing of Environment,2017,195:259-274.
[27]Wang D Z,Wan B,Qiu P H,et al. Evaluating the performance of sentinel-2,landsat 8 and pléiades-1 in mapping mangrove extent and species[J]. Remote Sensing,2018,10(9):1468.
[28]Puliti S,Saarela S,Gobakken T,et al. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference[J]. Remote Sensing of Environment,2018,204:485-497.
[29]Tucker C,Pinzon J,Brown M,et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing,2005,26(20):4485-4498.
[30]Huete A,Didan K,Miura T,et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83(1/2):195-213.
[31]Xiao X,Boles S,Liu J,et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment,2005,95(4):480-492.
[32]Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing,2006,27(14):3025-3033.
[33]Gitelson A,Merzlyak M N .Quantitative estimation of chlorophyll-a using reflectance spectra:experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry and Photobiology B Biology,1994,22(3):247-252.
[34]Dong J W,Xiao X M,Kou W L,et al. Tracking the dynamics of paddy rice planting area in 1986—2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment,2015,160:99-113.
[35]Zou Z H,Xiao X M,Dong J W,et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(15):3810-3815.

相似文献/References:

[1]李恒锐,邱文武,马文清,等.不同类型肥料对甘蔗产量及品质的影响[J].江苏农业科学,2014,42(10):83.
 Li Hengrui,et al.Effects of different types of fertilizers on yield and quality of cane[J].Jiangsu Agricultural Sciences,2014,42(1):83.
[2]林克涛,朱朝枝,陈如凯.基于灰色模型的中国甘蔗产业生态服务价值预测[J].江苏农业科学,2016,44(04):505.
 Lin Ketao,et al.Forecasting on ecological service value of Chinas sugarcane industry based on grey model[J].Jiangsu Agricultural Sciences,2016,44(1):505.
[3]罗菊川,区颖刚,刘庆庭.甘蔗断尾现状及断尾机构分析[J].江苏农业科学,2016,44(06):423.
 Luo Juchuan,et al.Analysis of status and cutting mechanism of sugarcane tail-breaking[J].Jiangsu Agricultural Sciences,2016,44(1):423.
[4]叶颉,许莉萍.基于DEA的中国甘蔗优势产区生产效率实证研究[J].江苏农业科学,2015,43(05):476.
 Ye Jie.Empirical study on production efficiency of Chinas main sugarcane-producing regions based on data envelopment analysis[J].Jiangsu Agricultural Sciences,2015,43(1):476.
[5]管欢,刘晓亮,唐文伟,等.环嗪酮对不同甘蔗品种苗期生长的影响[J].江苏农业科学,2015,43(05):98.
 Guan Huan,et al.Effect of hexazinone on growth of different sugarcane varieties at seedling stage[J].Jiangsu Agricultural Sciences,2015,43(1):98.
[6]伍苏然,杨乃博,熊国如,等.海南蔗区不同甘蔗种质对螟虫抗性差异比较[J].江苏农业科学,2015,43(03):100.
 Wu Suran,et al.Comparison of borer resistance difference of different sugarcane germplasm in Hainan Province[J].Jiangsu Agricultural Sciences,2015,43(1):100.
[7]杨平飞,李素丽,李正文,等.分根区交替灌溉对甘蔗生理生化性状的影响[J].江苏农业科学,2015,43(03):103.
 Yang Pingfei,et al.Effect of root-divided alternative irrigation on physiological and biochemical properties of sugarcane[J].Jiangsu Agricultural Sciences,2015,43(1):103.
[8]谢金兰,吴建明,黄杏,等.我国甘蔗新品种(系)的抗旱性研究[J].江苏农业科学,2015,43(03):108.
 Xie Jinlan,et al.Study on drought resistance of new sugarcane varieties(lines)[J].Jiangsu Agricultural Sciences,2015,43(1):108.
[9]李晓君,周文吉,周启武,等.ShSAP1的原核表达及多克隆抗体的制备[J].江苏农业科学,2015,43(03):43.
 Li Xiaojun,et al.Prokaryotic expression of ShSAP1 and preparation of its polyclonal antibodies[J].Jiangsu Agricultural Sciences,2015,43(1):43.
[10]檀小辉,张继,梁芳,等.基于EST序列的甘蔗SNP发掘及分析[J].江苏农业科学,2016,44(07):64.
 Tan Xiaohui,et al.Excavation and analysis of sugarcane SNP based on expressed sequence tag[J].Jiangsu Agricultural Sciences,2016,44(1):64.

备注/Memo

备注/Memo:
收稿日期:2023-03-27
基金项目:国家自然科学基金(编号:42061071);广西科技基地和人才专项(编号:桂科AD20297027);广西自然科学基金(编号:2021GXNSFBA220061);广西高校中青年教师科研基础能力提升项目(编号:2021KY0397);统计学广西一流学科建设项目(编号:桂教科研〔2022〕1号)。
作者简介:杨妮(1989—),女,广西桂平人,博士研究生,副教授,主要从事GIS与遥感应用以及空间信息技术应用与服务研究。E-mail:yangniyyy@163.com。
通信作者:邓树林,博士,助理研究员,主要从事资源环境遥感研究。E-mail:dengshulin12531@163.com。
更新日期/Last Update: 2024-01-05