[1]周艳丽,李晓威,刘娜,等. 内蒙古甜菜制糖产业发展探析[J]. 中国糖料,2020,42(2):59-64.
[2]刘晓雪,蒙威宇,谢由之. 甜菜生产大幅波动的原因探究:基于199份农户调查问卷[J]. 中国糖料,2024,46(2):92-102.
[3]汤雷雷,万开元,陈防. 养分管理与农田杂草生物多样性和遗传进化的关系研究进展[J]. 生态环境学报,2010,19(7):1744-1749.
[4]袁洪波,赵努东,程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报,2020,51(2):323-334.
[5]李彧,余心杰,郭俊先. 基于全卷积神经网络方法的玉米田间杂草识别[J]. 江苏农业科学,2022,50(6):93-100.
[6]孟庆宽,张漫,杨晓霞,等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报,2020,51(12):238-245,303.
[7]毛文华,张银桥,王辉,等. 杂草信息实时获取技术与设备研究进展[J]. 农业机械学报,2013,44(1):190-195.
[8]姜红花,张传银,张昭,等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报,2020,51(6):220-228,247.
[9]苗中华,余孝有,徐美红,等. 基于图像处理多算法融合的杂草检测方法及试验[J]. 智慧农业,2020,2(4):103-115.
[10]胡炼,刘海龙,何杰,等. 智能除草机器人研究现状与展望[J]. 华南农业大学学报,2023,44(1):34-42.
[11]翁杨,曾睿,吴陈铭,等. 基于深度学习的农业植物表型研究综述[J]. 中国科学(生命科学),2019,49(6):698-716.
[12]Li Y,Guo Z Q,Shuang F,et al. Key technologies of machine vision for weeding robots:a review and benchmark[J]. Computers and Electronics in Agriculture,2022,196:106880.
[13]胡盈盈,王瑞燕,郭鹏涛,等. 基于近地光谱特征的玉米田间杂草识别研究[J]. 江苏农业科学,2020,48(8):242-246.
[14]化春键,张爱榕,陈莹. 基于改进的Retinex算法的草坪杂草识别[J]. 江苏农业学报,2021,37(6):1417-1424.
[15]李柯泉,陈燕,刘佳晨,等. 基于深度学习的目标检测算法综述[J]. 计算机工程,2022,48(7):1-12.
[16]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):1137-1149.
[17]He K M,Gkioxari G,Dollár P,et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Italy:IEEE Press,2017:2961-2969.
[18]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[C]//Computer Vision-ECCV 2016. Cham:Springer International Publishing,2016:21-37.
[19]Kumar P,Misra U. Deep learning for weed detection:exploring YOLO v8 algorithms performance in agricultural environments[C]//Proceedings of the 2024 2nd International Conference on Disruptive Technologies (ICDT). Greater Noida:IEEE Press,2024:255-258.
[20]Gallo I,Rehman A U,Dehkordi R H,et al. Deep object detection of crop weeds:performance of YOLO v7 on a real case dataset from UAV images[J]. Remote Sensing,2023,15(2):539.
[21]Ying B Y,Xu Y C,Zhang S,et al. Weed detection in images of carrot fields based on improved YOLO v4[J]. Traitement Du Signal,2021,38(2):341-348.
[22]Wang Q F,Cheng M,Huang S,et al. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings[J]. Computers and Electronics in Agriculture,2022,199:107194.
[23]亢洁,刘港,郭国法. 基于多尺度融合模块和特征增强的杂草检测方法[J]. 农业机械学报,2022,53(4):254-260.
[24]邓天民,程鑫鑫,刘金凤,等. 基于特征复用机制的航拍图像小目标检测算法[J]. 浙江大学学报(工学版),2024,58(3):437-448.
[25]Zheng Z H,Wang P,Liu W,et al. Distance-IoU loss:Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12993-13000.
[26]Hou Q B,Zhou D Q,Feng J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville:IEEE Press,2021:13713-13722.
[27]Zhang X,Liu C,Yang D,et al. RFAConv:innovating spatial attention and standard convolutional operation [EB/OL]. arxiv preprint,arxiv:2304.03198v6(2023-04-06) [2024-04-07]. https://doi.org/10.48550/arXiv.2304.03198.
[28]Liu C,Wang K G,Li Q,et al. Powerful-IoU:more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks,2024,170:276-284.
[29]Salazar-Gomez A,Darbyshire M,Gao J,et al. Beyond mAP:towards practical object detection for weed spraying in precision agriculture [C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto Japan:IEEE Press,2022:9232-9238.
[1]王激清,刘社平,白晓瑛.盐胁迫对不同品种甜菜种子萌发特性的影响[J].江苏农业科学,2015,43(03):96.
Wang Jiqing,et al.Effect of salt stress on germination characteristics of different varieties of sugar beet seeds[J].Jiangsu Agricultural Sciences,2015,43(24):96.
[2]费聪,王维成,李阳阳,等.氮素运筹对滴灌甜菜叶片光合特性的影响[J].江苏农业科学,2016,44(12):227.
Fei Cong,et al.Effects of nitrogen management on photosynthetic characteristics of drip irrigated sugar beet[J].Jiangsu Agricultural Sciences,2016,44(24):227.
[3]高金秋,周建朝,王孝纯,等.部分高抗低磷胁迫基因型甜菜AFLP指纹图谱的构建[J].江苏农业科学,2017,45(06):36.
Gao Jinqiu,et al.Establishment of AFLP fingerprint for some highly resistance and low-phosphorous sugar beet varieties[J].Jiangsu Agricultural Sciences,2017,45(24):36.
[4]杨荣超,田海清,李斐,等.基于甜菜冠层高光谱红边参数的SPAD值诊断[J].江苏农业科学,2017,45(11):153.
Yang Rongchao,et al.SPAD value diagnosis based on red edge parameters of sugarbeet canopy hyperspectral[J].Jiangsu Agricultural Sciences,2017,45(24):153.
[5]张自强,白晨,张惠忠,等.甜菜雄性不育系高效组培再生体系的建立[J].江苏农业科学,2017,45(20):107.
Zhang Ziqiang,et al.Establishment of high efficient tissue culture regeneration system of beet male sterile line[J].Jiangsu Agricultural Sciences,2017,45(24):107.
[6]张晶,张珏,王辉,等.甜菜光谱与生长信息相关性分析[J].江苏农业科学,2018,46(03):132.
Zhang Jing,et al.Correlation analysis of spectrum and growth information of sugar beet[J].Jiangsu Agricultural Sciences,2018,46(24):132.
[7]费聪,王维成,李阳阳,等.利用Greenseeker法诊断甜菜氮素营养状况[J].江苏农业科学,2018,46(04):128.
Fei Cong,et al.Nitrogen nutrition analysis of sugar beet by Greenseeker[J].Jiangsu Agricultural Sciences,2018,46(24):128.
[8]梁文洁,张丽,郭新勇,等.MLL启动子驱动SST基因转化甜菜的抗旱性分析[J].江苏农业科学,2018,46(05):43.
Liang Wenjie,et al.Drought resistance of transformed sugar beet with SST gene driven by promoter MLL[J].Jiangsu Agricultural Sciences,2018,46(24):43.
[9]李国龙,孙亚卿,邵世勤,等.甜菜幼苗叶片渗透调节系统及部分激素对干旱胁迫的响应[J].江苏农业科学,2018,46(07):80.
Li Guolong,et al.Response of osmoregulation system and some hormones to drought stress in sugar beet leaves during seedling stage[J].Jiangsu Agricultural Sciences,2018,46(24):80.
[10]胡盈盈,王瑞燕,郭鹏涛,等.基于近地光谱特征的玉米田间杂草识别研究[J].江苏农业科学,2020,48(8):242.
Hu Yingying,et al.Recognition of weeds in maize fields based on near-earth spectrum characteristics[J].Jiangsu Agricultural Sciences,2020,48(24):242.