|本期目录/Table of Contents|

[1]王海斌,叶江华,孔祥海,等.铜胁迫下不同茶树的生理响应及亚细胞水平铜分布特性[J].江苏农业科学,2016,44(11):219-223.
 Wang Haibin,et al.Physiological response and copper distribution characteristics in subcellular level of different tea tree under copper stress[J].Jiangsu Agricultural Sciences,2016,44(11):219-223.
点击复制

铜胁迫下不同茶树的生理响应
及亚细胞水平铜分布特性
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年11期
页码:
219-223
栏目:
园艺与林学
出版日期:
2016-11-25

文章信息/Info

Title:
Physiological response and copper distribution characteristics in subcellular level of different tea tree under copper stress
作者:
王海斌13 叶江华3 孔祥海1 丁力1 张清旭1 马小毛1 贾小丽23
1.龙岩学院生命科学学院,福建龙岩 364012; 2.武夷学院生态与资源工程学院,福建武夷山 354300;
3.福建省农业生态过程与安全监控重点实验室(福建农林大学),福建福州 350002
Author(s):
Wang Haibinet al
关键词:
茶树铜胁迫生理特性亚细胞分布特征
Keywords:
-
分类号:
X503.235;S571.101
DOI:
-
文献标志码:
A
摘要:
为了分析不同茶树对Cu胁迫的生理响应及组织亚细胞Cu分布特性,采用水培法,探讨铁观音、肉桂2种茶树在不同浓度Cu胁迫下,茶树根部、叶部生理响应及其亚细胞Cu分布特征,以期为重金属对茶树毒害机制和茶树对重金属的自我防御研究提供理论依据。结果表明,随着Cu胁迫浓度的增加,茶树根部、叶部SOD、POD、CAT活性呈现下降趋势,且肉桂对Cu胁迫的耐受性高于铁观音。相同浓度Cu胁迫下2种茶树不同组织亚细胞中的Cu含量根部大于叶片。正常条件下,2种茶树根部、叶部亚细胞组分中细胞器的Cu含量最高,当胁迫Cu浓度>0 mg/L、≤40 mg/L 时,细胞溶质Cu含量最高,当胁迫Cu浓度>40 mg/L时,细胞壁Cu含量最高。Cu胁迫下,铁观音主要采取提高细胞溶质和细胞器中Cu离子含量来降低Cu离子毒害,而肉桂主要以提高细胞壁中Cu离子的结合率来降低Cu离子毒害,可见不同的茶树在Cu胁迫下所表现的解毒模式存在着一定差异。
Abstract:
-

参考文献/References:

[1]Hevia K,Arancibia V,Carlos R R. Levels of copper in sweeteners,sugar,tea,coffee and mate infusions. Determination by adsorptive stripping voltammetry in the presence of α-lipoic acid[J]. Microchemical Journal,2015,119:11-16.
[2]Robinson N J,Tommey A M,Kuske C,et al. Plant metallothioneins[J]. Biochem J,1993,295(1):1-10.
[3]田生科,李廷轩,杨肖娥,等. 植物对铜的吸收运输及毒害机理研究进展[J]. 土壤通报,2006,37(2):387-394.
[4]Navarro M,Wood R J. Plasma changes in micronutrients following a multivitamin and mineral supplement in healthy adults[J]. J Am Coll Nutr,2003,22(2):124-129.
[5]Sarma L S,Kumar J R,Reddy K J,et al. Development of an extractive spectro-photometric method for the determination of copper(Ⅱ)in leaf vegetable and pharmaceutical samples using pyridoxal-4-phenyl-3-thiosemicarbazone(PPT)[J]. J Agric Food Chem,2005,53(14):5492-5498.
[6]Ngah W W S,Hanafiah M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsoebents:a review[J]. Bioresour Technol,2008,99(10):3935-3948.
[7]Wang X,Liu Y G,Zeng G M,et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea(L.)Gaud[J]. Environmental and Experimental Botany,2008,62(3):389-395.
[8]Wu F B,Dong J,Qian Q Q,et al. Subcellular distribution and chemical forms of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere,2005,60(10):1437-1446.
[9]徐向华,施积炎,陈新才,等. 锰在商陆叶片的细胞分布及化学形态分析[J]. 农业环境科学学报,2008,27(2):515-520.
[10]姜春辉,王秀峰,尹博,等. 外源NO对Cu胁迫下番茄Cu的亚细胞分布和化学形态的影响[J]. 应用生态学报,2012,23(11):3033-3039.
[11]李红婷,董然. 2种萱草对铅、镉的吸收累积及其在亚细胞的分布和化学形态特征[J]. 华南农业大学学报,2015,36(4):59-64.
[12]Alcolea A,Vázquez M,Caparrós A,et al. Heavy metal removal of intermittent acid mine drainage with an open limestone channel[J]. Miner Eng,2012,26:86-98.
[13]Chuah T G,Jumasiah A,Azni I,et al. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal:an overview[J]. Desalt,2005,175(3):305-316.
[14]Davies H,Weber P,Lindsay P,et al. Characterisation of acid mine drainage in a high rainfall mountain environment,New Zealand[J]. Sci Total Environ,2011,409(15):2971-2980.
[15]Mehra A,Barker C L. Leaching and bioavailability of aluminium,copper and manganese from tea(Camellia sinensis)[J]. Food Chem,2007,100(4):1456-1463.
[16]Seenivasan S,Manikandan N. Heavy metal content of black teas from South India[J]. Food Control,2008,19(8):746-749.
[17]Wang L,Jiang L,Zhao Z Y,et al. Lithium content of some teas and their infusions consumed in China[J]. Food Sci Biotechnol,2014,23(1):323-325.
[18]Miyauchi S,Yuki T,Fuji H,et al. High-quality green tea leaf production by artificial cultivation under growth chamber conditions considering amino acids profile[J]. Journal of Bioscience and Bioengineering,2014,118(6):710-715.
[19]赵先明,汪艳霞,杜晓,等. 水培茶树对铅的吸收与累积特性研究[J]. 茶叶科学,2011,31(3):237-246.
[20]张志良,瞿伟菁. 植物生理学实验指导[M]. 北京:高等教育出版社,2003.
[21]Mohammad N,Samar M,Alireza I. Levels of Cu,Zn,Pb,and Cd in the leaves of the tea plant(Camellia sinensis)and in the soil of Gilan and Mazandaran farms of Iran[J]. Food Measure,2014,8(4):277-282.
[22]Qiao X Q,Shi G X,Jia R,et al. Physiological and biochemical responses induced by lead stress in Spirodela polyrhiza[J]. Plant Growth Regulation,2012,67(3):217-225.
[23]Zeng L S,Liao M,Chen C L,et al. Effects of lead contamination on soil enzymatic activities,microbial biomass,and rice physiological indices in soil-lead-rice(Oryza sativa L.)system[J]. Ecotoxicology and Environmental Safety,2007,67(1):67-74.
[24]宋宁,李柯妮,王康才,等. 根外喷施铜、锰、锌对桔梗生长及品质的影响[J]. 江苏农业科学,2015,43(9):285-289.
[25]赵慧,徐迎春,张翔,等. 外源NO对铜、镉胁迫下狭叶香蒲生理反应的影响[J]. 江苏农业学报,2015,31(2):260-266.
[26]李钠钾,许安定,江厚龙,等. 不同浓度硫酸铜对烟草漂浮育苗根系生长及光合特性的影响[J]. 江苏农业科学,2015,43(1):110-113.
[27]Sarre G,Saumitou-Laprade P,Bert V,et al. Forms of zinc accumulated in the hyperaccum ulator Arabidopsis halleri[J]. Plant Physiol,2002,130(4):1815-1826.
[28]An L Z,Liu Y H,Zhang M X,et al. Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation[J]. Journal of Plant Physiology,2005,162(3):317-326.

相似文献/References:

[1]李金,魏艳丽,庞磊,等.茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J].江苏农业科学,2013,41(10):21.
 Li Jin,et al.Differences in expression of TCS1、TIDH and SAMS genes in caffeine synthetic route of Camellia Sinensis and their correlation with caffeine contents[J].Jiangsu Agricultural Sciences,2013,41(11):21.
[2]朱韦京,余树全,汪赛,等.不同酸雨作用方式对茶树幼苗生长与光合特征参数的影响[J].江苏农业科学,2014,42(10):232.
 Zhu Weijing,et al.Effects of different acid rain action modes on growth and photosynthetic parameters of Camellia sinensis seedlings[J].Jiangsu Agricultural Sciences,2014,42(11):232.
[3]彭海涛,陈炜炀,姜永平.松花菜对铜胁迫的响应及外源水杨酸和赤霉素对铜毒害的缓解效应[J].江苏农业科学,2014,42(10):149.
 Peng Haitao,et al.Response of cauliflower to copper stress and alleviating effect of exogenous salicylic acid and gibberellic acid on copper toxicity[J].Jiangsu Agricultural Sciences,2014,42(11):149.
[4]李荣林,李珍珍,杨亦扬,等.以诱导抗性为基础的茶树病虫害控制新技术[J].江苏农业科学,2013,41(11):145.
 Li Ronglin,et al.New diseases and insect pests control techniques for tea tree based on induced resistance[J].Jiangsu Agricultural Sciences,2013,41(11):145.
[5]王雪萍,龚自明,高士伟,等.ABT1号生根粉对茶树穴盘扦插生根的影响[J].江苏农业科学,2013,41(11):277.
 Wang Xueping,et al.Effect of rooting powder ABT1 on rooting of tea tree plug seedlings[J].Jiangsu Agricultural Sciences,2013,41(11):277.
[6]周萌,李友勇,孙雪梅,等.基于EST-SSR标记的云南野生茶树遗传多样性分析[J].江苏农业科学,2013,41(12):22.
 Zhou Meng,et al.Genetic diversity analysis of wild tea trees in Yunnan Province based on EST-SSR markers[J].Jiangsu Agricultural Sciences,2013,41(11):22.
[7]姜自红,刘中良.嫁接对铜胁迫下黄瓜幼苗生长和光合特性的影响[J].江苏农业科学,2016,44(04):201.
 Jiang Zihong,et al.Effects of grafting on growth and photosynthetic characteristics of cucumber seedling under copper stress[J].Jiangsu Agricultural Sciences,2016,44(11):201.
[8]杨亦扬,胡雲飞,李荣林,等.不同茶树品种的碧螺春茶适制性[J].江苏农业科学,2015,43(09):219.
 Yang Yiyang,et al.Study on processing suitability of Biluochun tea from different tea plant varieties[J].Jiangsu Agricultural Sciences,2015,43(11):219.
[9]胡雲飞,杨亦扬,李荣林,等.不同时段喷施叶面肥对春茶新梢生长与品质的影响[J].江苏农业科学,2015,43(07):170.
 Hu Yunfei,et al.Effects of sparying foliage fertilizer at different times on growth and quality of fresh tea new shoots[J].Jiangsu Agricultural Sciences,2015,43(11):170.
[10]李荣林,杨亦扬,胡雲飞,等.茶树的抗虫性和抗性育种研究[J].江苏农业科学,2015,43(05):1.
 Li Rongling,et al.Study on insect resistance and stress-resistance breeding of tea plant[J].Jiangsu Agricultural Sciences,2015,43(11):1.

备注/Memo

备注/Memo:
收稿日期:2016-02-28
基金项目:国家“948”项目(编号:2014-Z36);福建省南平市科技计划(编号:N2013X01-6);福建省农业生态过程与安全监控重点实验室(福建农林大学)开放基金;龙岩学院“人才引进项目”(编号:LB2015001)。
作者简介:王海斌(1983—),男,福建龙海人,博士,讲师,主要从事植物生理与分子生态学研究。E-mail:w13599084845@sina.com。
通信作者:贾小丽,博士,副教授,主要从事植物生理与分子生态学研究。E-mail:jcjyx@126.com。
更新日期/Last Update: 2016-11-25