|本期目录/Table of Contents|

[1]文璐.绿化植物对二氧化硫吸收能力及其生理特性分析[J].江苏农业科学,2018,46(18):141-146,152.
 Wen Lu.Absorption capacity of green plants to sulfur dioxide and analysis of its physiological characteristics[J].Jiangsu Agricultural Sciences,2018,46(18):141-146,152.
点击复制

绿化植物对二氧化硫吸收能力及其生理特性分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第18期
页码:
141-146,152
栏目:
园艺与林学
出版日期:
2018-09-20

文章信息/Info

Title:
Absorption capacity of green plants to sulfur dioxide and analysis of its physiological characteristics
作者:
文璐
四川建筑职业技术学院风景园林系,四川成都 611130
Author(s):
Wen Lu
关键词:
绿化植物二氧化硫吸收能力生理特性
Keywords:
-
分类号:
X173
DOI:
-
文献标志码:
A
摘要:
采用人工模拟熏气法,研究了6种广州市绿化植物(紫薇、白兰、木棉、樟树、秋枫、细叶榕)对SO2气体吸收净化能力及其生理变化特征。结果显示,在不同SO2质量浓度(0.25、0.50 mg/m3)环境下,白兰和木棉叶片硫含量以及对SO2吸收净化量最高,均显著高于秋枫和细叶榕(P<0.05),樟树和紫薇叶片硫含量以及对SO2吸收净化量最低(P<0.05)。樟树和紫薇叶片类胡萝卜素含量、叶绿素含量、细胞膜渗透率、可溶性蛋白和可溶性糖含量最高,均显著高于秋枫和细叶榕(P<0.05)。白兰和木棉叶片游离脯氨酸含量、丙二醛含量最高,均显著高于秋枫和细叶榕(P<005)。不同绿化植物叶片净化量与叶片生理特性具有显著相关性,叶片对SO2吸收净化量与类胡萝卜素含量、叶绿素含量、细胞膜渗透率、可溶性蛋白和可溶性糖含量呈显著或极显著正相关,与游离脯氨酸、丙二醛含量呈显著或极显著负相关,以紫薇和樟树的相关系数绝对值最大,由此可知,紫薇和樟树对SO2吸收净化能力较强。本研究可为城市功能型植物选择和广东生态景观林带建设提供科学依据。
Abstract:
-

参考文献/References:

[1]Pan W,Zhang W,Zhang F,et al. Decontamination ability of sulfur dioxide and nitrogen dioxide for 38 young landscaping plants in Guangzhou city[J]. Ecology & Environmental Sciences,2012,21(4):606-612.
[2]Zhang D,Chu G,Yu Q,et al. Decontamination ability of garden plants to absorb sulfur dioxide and fluoride[J]. Journal of TroPical & SubtroPical Botany,2003,11(4):336-340.
[3]Ibáez I,Katz D W,Peltier D,et al. Assessing integrated effects of landscape fragmentation on plants and plant communities:the challenge of multiProcess-multiresPonse dynamics[J]. Journal of Ecology,2014,102(4):882-895.
[4]Pardee G L,Philpott S M. Native plants are the bees knees:local and landscape predictors of bee richness and abundance in backyard gardens[J]. Urban Ecosystems,2014,17(3):641-659.
[5]Hunt C O,Rabett R J. Holocene landscape intervention and plant food production strategies in island and mainland Southeast Asia[J]. Journal of Archaeological Science,2014,51:22-33.
[6]Pyott D E,Molnar A. Going Mobile:non-cell-autonomous small RNAs shape the genetic landscape of plants[J]. Plant Biotechnology Journal,2015,13(3):306-318.
[7]Molares S,Ladio A. Medicinal plants in the cultural landscape of a maPuche-tehuelche community in arid argentine patagonia:an eco-sensorial approach[J]. Journal of Ethnobiology and Ethnomedicine,2014,10(1):61.
[8]户塚绩,刘荣坤. 植物对大气污染环境的净化作用[J]. 环境工程学报,1984(1):75-79.
[9]刘艳菊,丁辉. 植物对大气污染的反应与城市绿化[J]. 植物学通报,2001,18(5):577-586,576.
[10]Colmenares J C,Luque R,Campelo J M,et al. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass:an overview[J]. Materials,2009,2(4):2228-2258.
[11]Ramacharyulu P K,Prasad G K,Kumar J P,et al. Photocatalytic decontamination of sulfur mustard over manganese oxide nanobelts[J]. Environmental Progress & Sustainable Energy,2013,32(4):1118-1123.
[12]Pan W,Zhang W,Zhang F,et al. Resistance of rhodoleia championii and other plants to sulfur dioxide and nitrogen dioxide[J]. Ecology & Environmental Sciences,2012,21(11):1851-1858.
[13]Prasad G K,Ramacharyulu P V R K,Beer S K,et al. Sun light assited photocatalytic decontamination of sulfur mustard by using ZnO nanoparticles[J]. Journal of Molecular Catalysis A:Chemical,2011,349:55-62.
[14]Peterson G W,Rossin J A,Karwacki C J,et al. Surface chemistry and morphology of zirconia polymorphs and the influence on sulfur dioxide removal[J]. Journal of Physical Chemistry C,2011,115(19):9644-9650.
[15]Gilbert O L. The growth of planted trees subject to fumes from brickworks[J]. Environmental Pollution,1983,31(4):301-310.
[16]Chen S,Min F,Shang X. Comparison on the decontamination ability of several tropical landscape plants in different water bodies[J]. Chinese Journal of Tropical Crops,2010,123(31):68-71.
[17]Zhang X,Zhou P,Zhang W,et al. Selection of landscape tree species of tolerant to sulfur dioxide pollution in subtropical china[J]. Open Journal of Forestry,2013,03(4):104-108.
[18]Pan W,Zhang W,Zhang F,et al. Effects of SO2 and NO2 stress on photosynthetic physiology of Rhodoleia championii and other plants and their resistance evaluation[J]. Ecology & Environmental Sciences,2012,21(6):1075-1081.
[19]Tao L,Ren J,Zhong D U,et al. Effect of SO2 pollution on morphological symptoms of landscaping tree species in Lanzhou[J]. Environmental Science & Technology,2009,32(6):34-37.
[20]Murphy B D,Johnson W C,Schlatter E C. Simulated deposition rates for SO2 on a southeastern U.S. landscape[J]. Agricultural Meteorology,1980,21(3):179-193.
[21]Wehtje G R,Gilliam C H,Grey T L. Potential for halosulfuron to control eclipta (Eclipta prostrata) in container-grown landscape plants and its sorption to container rooting substratel[J]. Weed Technology,2006,20(2):361-367.

相似文献/References:

[1]李青,李荣华,陈迪勇,等.盆栽植物红豆杉对室内空气中二氧化硫污染的净化作用[J].江苏农业科学,2016,44(07):268.
 Li Qing,et al.Clean-up effect of potted plant Taxus chinensis on indoor air sulfur dioxide pollution[J].Jiangsu Agricultural Sciences,2016,44(18):268.
[2]李东,左勇,祁峰,等.桑椹果酒稳定性研究[J].江苏农业科学,2015,43(03):253.
 Li Dong,et al.Study on stability of mulberry wine[J].Jiangsu Agricultural Sciences,2015,43(18):253.
[3]刘颖,李冬杰,李朝炜,等.绿化植物叶面特征对滞尘效应的影响[J].江苏农业科学,2016,44(08):454.
 Liu Ying,et al.Effect of leaf surface characteristics on dust-retention capability of afforested plants[J].Jiangsu Agricultural Sciences,2016,44(18):454.
[4]周旭丹,安佰仪,王薇,等.北方城市不同植物滞尘效应季节变化[J].江苏农业科学,2016,44(08):489.
 Zhou Xudan,et al.Study on seasonal dust-retention capacity of different green plants in northern city[J].Jiangsu Agricultural Sciences,2016,44(18):489.
[5]夏冰,马晓.郑州市绿化植物滞尘效应及其生理特征响应[J].江苏农业科学,2017,45(06):127.
 Xia Bing,et al.Dust-retention effect of greening plants and the physiological characteristics response in Zhengzhou City[J].Jiangsu Agricultural Sciences,2017,45(18):127.
[6]杜俊卿.接种丛枝菌根真菌对不同绿化植物根际微环境的影响[J].江苏农业科学,2017,45(18):149.
 Du Junqing.Effects of inoculating arbuscular mycorrhizal fungi on rhizosphere microenvironment of different greening plants[J].Jiangsu Agricultural Sciences,2017,45(18):149.
[7]史伟,杨群,蒋跃军,等.4种园林绿化植物根际对土壤养分的富集效应[J].江苏农业科学,2018,46(08):140.
 Shi Wei,et al.Enrichment effect of four landscape plants on rhizosphere soil nutrients[J].Jiangsu Agricultural Sciences,2018,46(18):140.
[8]秦俊萍,葛正喜.不同程度大气污染区绿化植物叶片生理特征比较[J].江苏农业科学,2018,46(20):129.
 Qin Junping,et al.Comparison of leaf physiological characteristics of green plants in areas with different degrees of air pollution[J].Jiangsu Agricultural Sciences,2018,46(18):129.
[9]吴小青,张伟.6种典型园林绿化植物对大气中SO2的净化能力及生理生化响应[J].江苏农业科学,2019,47(02):127.
 Wu Xiaoqing,et al.Absorption abilities,physiological and biochemical responses of six typical greening plants to SO2 in atmosphere[J].Jiangsu Agricultural Sciences,2019,47(18):127.
[10]李其营.5种绿化植物对SO2的吸收能力与生理响应[J].江苏农业科学,2019,47(18):182.
 Li Qiying,et al.Absorption capacity and physiological response of five greening plants to SO2[J].Jiangsu Agricultural Sciences,2019,47(18):182.
[11]李晶,赵丽娜.城市典型绿化植物对二氧化硫的抗性生理研究[J].江苏农业科学,2018,46(09):156.
 Li Jing,et al.Physiological study on sulphur dioxide resistance of typical green plants in cities[J].Jiangsu Agricultural Sciences,2018,46(18):156.

备注/Memo

备注/Memo:
收稿日期:2017-02-21
作者简介:文璐(1983—),女,四川德阳人,硕士,主要从事园林生态学研究。E-mail:Wen_lu83@126.com。
更新日期/Last Update: 2018-09-20