|本期目录/Table of Contents|

[1]俎天娇,乔潇,张小芳,等.干旱胁迫下野生大豆bHLH家族转录组分析[J].江苏农业科学,2020,48(19):24-29.
 Zu Tianjiao,et al.Sequence analysis of bHLH transcription factor families of wild soybean under drought stress[J].Jiangsu Agricultural Sciences,2020,48(19):24-29.
点击复制

干旱胁迫下野生大豆bHLH家族转录组分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第19期
页码:
24-29
栏目:
生物技术
出版日期:
2020-10-05

文章信息/Info

Title:
Sequence analysis of bHLH transcription factor families of wild soybean under drought stress
作者:
俎天娇1乔潇2张小芳1张锴1乔亚科1李桂兰1
1.河北科技师范学院农学与生物科技学院,河北昌黎 066600; 2.河北科技师范学院物理系,河北秦皇岛 066004
Author(s):
Zu Tianjiaoet al
关键词:
野生大豆转录组干旱胁迫bHLH显著差异表达基因转录因子
Keywords:
-
分类号:
S565.101
DOI:
-
文献标志码:
A
摘要:
为获取干旱胁迫状态下的bHLH家族相关基因,以30 d苗龄的野生大豆为试验材料,浇灌20% PEG-6000模拟干旱胁迫,分别在干旱处理后0、6、12、24、48 h取样提取叶片RNA并进行转录组测序。以基因本体论数据库(GO)、京都基因与基因组百科全书数据库(KEGG)、NCRI蛋白数据库(NR)注释的结果为基础,以bHLH转录因子为关键词进行筛选,再综合转录因子分析中提供的相关数据,共获得177条相关序列,包括64个bHLH家族成员。通过蛋白网络互作分析确定了4个干旱相关基因。为进一步研究野生大豆干旱胁迫下bHLH家族抗旱基因提供了理论基础。
Abstract:
-

参考文献/References:

[1]徐立明,张振葆,梁晓玲,等. 植物抗旱基因工程研究进展[J]. 草业学报,2014,23(6):293-303.
[2]曹秀清,蒋尚明. 干旱胁迫对大豆品质及产量的影响[J]. 现代农业科技,2017(16):3-4,7.
[3]Kim M Y,Lee S,Van K,et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(51):22032-22037.
[4]Lam H M,Xu X,Liu X,et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics,2010,42(12):1053-1059.
[5]王翠,兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展[J]. 生命科学研究,2016,20(4):358-364.
[6]刘文文,李文学. 植物bHLH转录因子研究进展[J]. 生物技术进展,2013,3(1):7-11.
[7]刘文婷. 转录因子OsbHLH35在水稻抗褐飞虱中的功能研究[D]. 福州:福建农林大学,2018.
[8]赵小波,闫彩霞,张浩,等. 干旱胁迫下花生差异表达转录因子家族分析[J]. 农业生物技术学报,2018,26(7):1143-1154.
[9]武明珠,李锋,王燃,等. 烟草转录因子bHLH93基因的克隆及表达分析[J]. 烟草科技,2015,48(3):1-7.
[10]陈媞颖,刘娟,袁媛,等. 黄芩bHLH转录因子基因家族生物信息学及表达分析[J]. 中草药,2018,49(3):671-677.
[11]金曼,苏彦华. 沙冬青响应非生物胁迫的转录因子基因鉴定与分析[J]. 植物资源与环境学报,2018,27(1):1-10.
[12]应炎标,朱友银,郭卫东,等. 樱桃bHLH转录因子家族基因鉴定及表达分析[J]. 分子植物育种,2018,16(14):4559-4568.
[13]陈红霖,胡亮亮,王丽侠,等. 绿豆bHLH转录因子家族的鉴定与生物信息学分析[J]. 植物遗传资源学报,2017,18(6):1159-1167.
[14]马进,郑钢. 利用转录组测序技术鉴定紫花苜蓿根系盐胁迫应答基因[J]. 核农学报,2016,30(8):1470-1479.
[15]苏稚喆,王雪华,杨华,等. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志,2016,36(4):69-77.
[16]王洋. NaHCO3模拟盐碱混合胁迫下野生大豆转录组研究[D]. 哈尔滨:东北农业大学,2014.
[17]Zhang J L,Wang J X,Jiang W,et al. Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq[J]. Frontiers in Plant Science,2016,7(106):1842.
[18]Yuan S,Li R,Chen S L,et al. RNA-Seq analysis of differential gene expression responding to different rhizobium strains in soybean (Glycine max) roots[J]. Frontiers in Plant Science,2016,7:721.
[19]Shi G X,Huang F Gong Y,et al. RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in curled-cotyledons mutant of soybean[Glycine max (L.) Merr.][J]. BMC Genomics,2014,15(1):510.
[20]张小芳,王冰冰,徐燕,等. PEG模拟干旱胁迫下野生大豆转录组分析[J]. 大豆科学,2018,37(5):681-689.
[21]Xu W,Dubos C,Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,2015,20(3):176-185.
[22]Bhave N S,Veley K M,Nadeau J A,et al. Too many mouths promotes cell fate progression in stomatal development of Arabidopsis stems[J]. Planta,2009,229(2):357-367.
[23]Zhang L Y,Bai M Y,Wu J X,et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis[J]. The Plant Cell,2009,21(12):3767-3780.
[24]Seo J S,Joo J,Kim M J,et al. OsbHLH148,a basic helix-loop-helix protein,interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant Journal,2011,65(6):907-921.
[25]陈李淼,沙爱华,张婵娟,等. 一个大豆脱水胁迫响应的bHLH类转录因子的克隆及功能分析[J]. 中国油料作物学报,2013,35(6):630-636.
[26]Abe H,Urao T,Ito T,et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell,2003,15(1):63-78.
[27]Li X L,Zhang H M,Ai Q,et al. Two bHLH transcription factors,bHLH34 and bHLH104,regulate Iron homeostasis in Arabidopsis thaliana[J]. Plant Physiology,2016,170(4):2478-2493.
[28]Chinnusamy V,Ohta M,Kanrar S,et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development,2003,17(8):1043-1054.
[29]Liu W W,Tai H H,Li S S,et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J]. New Phytologist,2014,201(4):1192-1204.
[30]Hir R L,Castelain M,Chakraborti D A,et al. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana[J]. Physiologia Plantarum,2017,160(3):312-327.
[31]光杨其,宋桂成,张金凤,等. 1个新棉花bHLH类基因GhbHLH130的克隆及表达分析[J]. 棉花学报,2014,26(4):363-370.
[32]Chung Y G,Koo L Y,Kim Y,et al. Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice.[J]. Plant Physiology,2009,149(4):1751-1760.
[33]Ohashi-Ito K,Bergmann D C. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development[J]. The Plant Cell,2006,18(10):2493-2505.
[34]韩笑. 茉莉酸信号途径调控拟南芥子叶下表皮气孔发育的研究[D]. 昆明:云南大学,2015.
[35]沈乾,陆续,张凌,等. 植物中MYC2转录因子功能研究进展[J]. 上海交通大学学报(农业科学版),2012,30(6):51-57.
[36]Bruex A,Kainkaryam R M,Wieckowski Y,et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis[J]. PLoS Genetics,2012,8(1):e1002446.
[37]Yao X N,Cai Y R,Yu D Q et al. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology,2018,60(8):691-702.
[38]李晓丽. 拟南芥转录因子bHLH34和bHLH104调控铁平衡[D]. 合肥:中国科学技术大学,2016.

相似文献/References:

[1]骆美蓉,江明锋,张鹏,等.山羊分子生物学研究进展[J].江苏农业科学,2014,42(01):46.
 Luo Meirong,et al.Research progress of molecular biology of goat[J].Jiangsu Agricultural Sciences,2014,42(19):46.
[2]盖玉红,牛陆,董宝池,等.不同浓度盐、碱胁迫对野生大豆光合特性和生理生化特性的影响[J].江苏农业科学,2014,42(05):89.
 Gai Yuhong,et al.Effects of saline alkali stress on photosynthetic characteristics and physiological-biochemical characteristics of wild soybean[J].Jiangsu Agricultural Sciences,2014,42(19):89.
[3]王廷河.饲用高粱和野生大豆根浸提液对饲用高粱根际微生物的影响[J].江苏农业科学,2014,42(07):215.
 Wang Tinghe.Effect of forage sorghum and wild soybean root extract on rhizospheric microorganism of forage sorghum[J].Jiangsu Agricultural Sciences,2014,42(19):215.
[4]章琼,蒋高中,李冰.水产动物对氨氮胁迫响应的转录组分析研究进展[J].江苏农业科学,2015,43(03):227.
 Zhang Qiong,et al.Research progress on transcriptome analyses of aquatic animals in response to ammonia-N stress[J].Jiangsu Agricultural Sciences,2015,43(19):227.
[5]董秋平,赵恢,张小芳,等.低磷胁迫下不同野生大豆的形态和生理响应差异[J].江苏农业科学,2017,45(09):79.
 Dong Qiuping,et al.Differences in morphology and physiological responses of different wild soybean under low phosphorus stress[J].Jiangsu Agricultural Sciences,2017,45(19):79.
[6]张高阳,邓接楼,柯维忠,等.红麻肌醇加氧酶基因的分离及表达分析[J].江苏农业科学,2017,45(18):48.
 Zhang Gaoyang,et al.Isolation and expression analysis of inositol oxygenase gene in kenaf[J].Jiangsu Agricultural Sciences,2017,45(19):48.
[7]方辉,蒋胜理,曲俊杰,等.基于高通量测序的野生毛葡萄转录组SSR信息分析[J].江苏农业科学,2017,45(20):64.
 Fang Hui,et al.SSR information analysis of Vitis quinquangularis Rehd transcriptome based on high-throughput sequencing[J].Jiangsu Agricultural Sciences,2017,45(19):64.
[8]欧奇,李鑫,田洋,等.多油辣木转录组高通量测序及分析[J].江苏农业科学,2017,45(20):71.
 Ou Qi,et al.High-throughput sequencing and analysis of transcriptome of Moringa oleifera Lam.[J].Jiangsu Agricultural Sciences,2017,45(19):71.
[9]虞杭,张得芳,樊光辉,等.枸杞转录组SSR分布特征分析及其与基因组SSR分布特征的比较[J].江苏农业科学,2018,46(14):24.
 Yu Hang,et al.Characteristic analysis of transcriptome SSR distribution of Lycium barbarum and its comparison with genomic SSR distribution[J].Jiangsu Agricultural Sciences,2018,46(19):24.
[10]陶仕珍,田斌,孙正海,等.绣球藤叶片转录组分析及SSR引物开发[J].江苏农业科学,2018,46(18):43.
 Tao Shizhen,et al.Transcriptome analysis and SSR primer development of Clematis montana leaves[J].Jiangsu Agricultural Sciences,2018,46(19):43.

备注/Memo

备注/Memo:
收稿日期:2019-11-29
基金项目:河北省自然科学基金(编号:C2019407006);国家转基因重大专项(编号:2014ZX0800404B)。
作者简介:俎天娇(1997—),女,河北邯郸人,硕士研究生,主要从事植物遗传资源及植物分子生物学研究。E-mail:947119850@qq.com。
通信作者:李桂兰,博士,教授,主要研究方向为作物遗传资源及作物基因工程。E-mail:lgl63@126.com。
更新日期/Last Update: 2020-11-09