|本期目录/Table of Contents|

[1]赵怡琳,吕铭,汪晓丽,等.微电极离子流技术在植物逆境生理研究中的应用及展望[J].江苏农业科学,2021,49(1):43-48.
 Zhao Yilin,et al.Application and prospect of microelectrode ion current technology in research of plant stress physiology[J].Jiangsu Agricultural Sciences,2021,49(1):43-48.
点击复制

微电极离子流技术在植物逆境生理研究中的应用及展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第1期
页码:
43-48
栏目:
专论与综述
出版日期:
2021-01-05

文章信息/Info

Title:
Application and prospect of microelectrode ion current technology in research of plant stress physiology
作者:
赵怡琳吕铭汪晓丽柏彦超单玉华
扬州大学环境科学与工程学院,江苏扬州 225099
Author(s):
Zhao Yilinet al
关键词:
微电极离子流技术逆境胁迫离子流活体基因功能
Keywords:
-
分类号:
Q945.78;Q-3
DOI:
-
文献标志码:
A
摘要:
植物在遭遇盐碱、干旱、重金属、低温、酸、机械刺激等非生物胁迫时,细胞膜电化学特性的变化和调节往往是最早发生的植物细胞反应之一,并与细胞内的生理代谢活动之间存在复杂的联系。基于此,在过去的30年间,微电极离子流技术以其非损伤性、实时性、灵敏性和高分辨率等特有的技术优势,成为了研究逆境胁迫条件下植物的生理响应及调节机制常用的技术手段。从跟踪监测界面反应、解析基因功能、进行抗逆育种和研究信号物质等方面综述该技术在植物逆境胁迫生理研究中的应用,旨在为研究植物功能基因组学和调节植物对环境的适应性提供参考。
Abstract:
-

参考文献/References:

[1]Jaffe L F,Nuccitelli R. An ultrasensitice vibrating probe for measuring steady extracellular currents[J]. Journal of Cell Biology, 1974,63(2):614-628.
[2]刘科,张丙林,张文英,等. 非损伤离子流检测技术在作物逆境研究中的应用[J]. 应用生态学报,2018,29(2):678-686.
[3]李静,韩庆庆,段丽婕,等. 非损伤微测技术在植物生理学研究中的应用及进展[J]. 植物生理学报,2014,50(10):1445-1452.
[4]贾代东,刘爱琴,李惠通,等. 非损伤微测技术在植物生理生态学研究中的应用进展[J]. 应用与环境生物学报,2017,23(1):175-182.
[5]Sa G,Yao J,Deng C,et al. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net[J]. New Phytol,2019,222(4):1951-1964.
[6]Tang X,Yang X,Li H,et al. Maintenance of K+/Na+balance in the roots of Nitraria sibirica Pall. in response to NaCl stress[J]. Forests,2018,9(10):601.
[7]Tang B,Yin CY,Liu Q. Characteristics of ammonium and nitrate fluxes along the roots of Picea asperata[J]. Journal of Plant Nutrition,2019,42(7):772-782.
[8]Chen Z H,Pottosin I I,Cuin T A,et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley[J]. Plant Physiology,2007,145(4):1714-1725.
[9]Huang Y M,Zou Y N,Wu Q S. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange[J]. Scientific Reports,2017,7:42335.
[10]Huang L L,Li M J,Zhou K,et al. Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia[J]. Plant Physiology and Biochemistry,2018,127:185-193.
[11]Zhang L,Li G J,Dong G Q,et al. Characterization and comparison of nitrate fluxes in Tamarix ramosissima and cotton roots under simulated drought conditions[J]. Tree Physiology,2018,39(4):628-640.
[12]Lv H,Teng Z,Wang S,et al. Voltammetric simultaneous ion flux measurements platform for Cu2+,Pb2+ and Hg2+ near rice root surface:Utilizing carbon nitride heterojunction film modified carbon fiber microelectrode[J]. Sensors and Actuators B-Chemical,2017,256:98-106.
[13]Wu Z C,Zhang W J,Xu S J,et al. Increasing ammonium nutrition as a strategy for inhibition of cadmium uptake and xylem transport in rice (Oryza sativa L.) exposed to cadmium stress[J]. Environmental and Experimental Botany,2018,155:734-741.
[14]高银. 植物抗逆机制与基因工程研究进展[J]. 内蒙古农业科技,2007(5):75-78.
[15]杨柳,张振乾,宋继金,等. 植物抗逆基因研究进展[J]. 作物研究,2010,24(2):126-129.
[16]Fan Y F,Wan S M,Jiang Y S,et al. Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis[J]. Protoplasma,2018,255(6):1827-1837.
[17]Xu Y,Yu Z P,Zhang S Z,et al. CYSTM3 negatively regulates salt stress tolerance in Arabidopsis[J]. Plant Molecular Biology,2019,99(4/5):395-406.
[18]Zhang H L,Deng C,Yao J,et al. Populus euphratica JRL mediates ABA response,ionic and ROS homeostasis in Arabidopsis under salt stress[J]. International Journal of Molecular Sciences,2019,20(4):815.
[19]Zhang W W,Song J F,Yue S,et al. MhMAPK4 from Malus hupehensis Rehd. decreases cell death in tobacco roots by controlling Cd2+ uptake[J]. Ecotoxicology and Environmental Safety,2019,168:230-240.
[20]Ma Y,Dai X Y,Xu Y Y,et al. COLD1 confers chilling tolerance in rice[J]. Cell,2015,160(6):1209-1221.
[21]Zhou A M,Liu E H,Li H,et al. PsCor413pm2,a plasma membrane-localized,cold-regulated protein from Phlox subulata,confers low temperature tolerance in Arabidopsis[J]. International Journal of Molecular Sciences,2018,19(9):2579.
[22]Liu Y,Yu Y C,Sun J Y,et al. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida[J]. Journal of Experimental Botany,2019,70(4):1389-1405.
[23]Chen Z H,Shabala S,Mendham N J,et al. Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley[J]. Crop Science,2008,48(4):1382-1388.
[24]毛桂莲,李国旗,许兴,等. NaHCO3胁迫下3种灌木Na+、K+、Ca2+的吸收及转运[J]. 应用生态学报,2014,25(3):718-724.
[25]Zhang X C,Wu H C,Chen L M,et al. Mesophyll cells ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis)[J]. Plant Physiology and Biochemistry,2019,136:196-203.
[26]耶兴元. Ca2+与植物抗逆性研究概况[J]. 信阳农林学院学报,2008,18(1):124-126.
[27]Lang T,Deng S R,Zhao N,et al. Salt-Sensitive signaling networks in the mediation of K+/Na+homeostasis gene expression in Glycyrrhiza uralensis roots[J]. Frontiers in Plant Science,2017,8:1403.
[28]Chao Z,Sha Y H,Ding D X,et al. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity,restricts its movement in plant and increase the growth of Syngonium podophyllum[J]. Chemosphere,2019,224:316-323.
[29]Jin Z P,Wang Z Q,Ma Q X,et al. Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana[J]. Plant and Soil,2017,419(1/2):141-152.
[30]Rodrigo-Moreno A,Andres-Colas N,Poschenrieder C,et al. Calcium-and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips:linking copper transport with cytosolic hydroxyl radical production[J]. Plant,Cell and Environment,2013,36(4):844-855.
[31]黄绢. 转JERF36基因银中杨的抗旱性评价及生理机理研究[D]. 北京:中国林业科学研究院,2016.
[32]Chen T X,Wang W L,Xu K,et al. K+and Na+transport contribute to K+/Na+homeostasis in Pyropia haitanensis under hypersaline stress[J]. Algal Research,2019,40:101526.
[33]郎涛. 盐胁迫下泌盐与非泌盐红树离子平衡调控信号网络研究[D]. 北京:北京林业大学,2014.
[34]张海娜,鲁向晖,王瑞峰,等. 稀土尾砂干旱胁迫对2种牧草种子萌发与幼苗生理特性的影响[J]. 江苏农业科学,2019,47(13):204-208.
[35]Mak M,Babla M,Xu S C,et al. Leaf mesophyll K+,H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean[J]. Environmental and Experimental Botany,2014,98:1-12.
[36]王学东,周红菊,华珞. 植物对重金属的抗性机理及其植物修复研究进展[J]. 南水北调与水利科技,2006,4(2):43-46.
[37]Ma J,Cai H M,He C W,et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells[J]. New Phytologist,2015,206(3):1063-1074.

相似文献/References:

[1]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
 Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(1):151.
[2]牛伟博.DREB转录因子及其在植物抗逆育种中的应用进展[J].江苏农业科学,2014,42(08):17.
 Niu Weibo.Progress on DREB transcription factor and its application in stress-resistance breeding of plants[J].Jiangsu Agricultural Sciences,2014,42(1):17.
[3]张美德,艾伦强,卢超,等.硒对镉胁迫下白术幼苗生理特性的影响[J].江苏农业科学,2015,43(10):306.
 Zhang Meide,et al.Effect of selenium on physiological characteristics of Atractylodes macrocephala Koidz. seedlings under cadmium stress[J].Jiangsu Agricultural Sciences,2015,43(1):306.
[4]吴巧娟,徐剑文,刘剑光,等.棉花应答逆境胁迫的蛋白质组学研究进展[J].江苏农业科学,2016,44(12):22.
 Wu Qiaojuan,et al.Research progress of proteomics in response to stress in cotton[J].Jiangsu Agricultural Sciences,2016,44(1):22.
[5]李丽,孙健,何雪梅,等.逆境胁迫下植物磷脂酶D的生理功能和作用机制综述[J].江苏农业科学,2018,46(08):1.
 Li Li,et al.Physiological function and mechanism of phospholipase D in plants under stress: a review[J].Jiangsu Agricultural Sciences,2018,46(1):1.
[6]高玉红,闫生辉,邓黎黎.逆境胁迫对甜瓜幼苗生长的影响及综合抗逆鉴定指标的筛选[J].江苏农业科学,2018,46(15):116.
 Gao Yuhong,et al.Effect of adversity stress on growth of muskmelon seedlings and screening of comprehensive indicators of stress resistance[J].Jiangsu Agricultural Sciences,2018,46(1):116.
[7]郗红超,李富平,鲁明星,等.植物根系在矿区生态修复中的应用研究进展[J].江苏农业科学,2019,47(05):19.
 Xi Hongchao,et al.Research progress on application of plant roots in ecological restoration of mining areas[J].Jiangsu Agricultural Sciences,2019,47(1):19.
[8]许昍,刘敏洁,王建华,等.甜玉米种子在不同逆境下的活力差异[J].江苏农业科学,2019,47(07):76.
 Xu Xuan,et al.Differences in vigor of sweet corn seeds under different adverse conditions[J].Jiangsu Agricultural Sciences,2019,47(1):76.
[9]帅良,孙健,段振华,等.植物非特异性磷脂酶C的研究进展[J].江苏农业科学,2019,47(18):30.
 Shuai Liang,et al.Research progress of structure and function of plant non-specific phospholipase C[J].Jiangsu Agricultural Sciences,2019,47(1):30.
[10]李昕晏,崔杰,李俊良,等.miRNA调控植物抗逆机制的研究现状[J].江苏农业科学,2019,47(21):63.
 Li Xinyan,et al.Research status of miRNA regulating plant stress resistance mechanism[J].Jiangsu Agricultural Sciences,2019,47(1):63.

备注/Memo

备注/Memo:
收稿日期:2019-10-09
基金项目:国家自然科学基金(编号:31872179);土壤与农业可持续发展国家重点实验室开放基金(编号:Y212000016);扬州大学大学生科技创新基金(编号:X20180462)。
作者简介:赵怡琳(1998—),女,江苏常州人,硕士研究生,主要从事植物逆境生理研究。E-mail:1324822006@qq.com。
通信作者:汪晓丽,博士,副教授,主要从事植物营养电生理研究。E-mail:xlwang@yzu.edu.cn。
更新日期/Last Update: 2021-01-05