|本期目录/Table of Contents|

[1]赵叶子,陈智坤,王铮,等.拟除虫菊酯类农药的微生物降解及其机制研究进展[J].江苏农业科学,2021,49(17):28-38.
 Zhao Yezi,et al.Research progress on microbial degradation of pyrethroid pesticides and its mechanism[J].Jiangsu Agricultural Sciences,2021,49(17):28-38.
点击复制

拟除虫菊酯类农药的微生物降解及其机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第17期
页码:
28-38
栏目:
专论与综述
出版日期:
2021-09-05

文章信息/Info

Title:
Research progress on microbial degradation of pyrethroid pesticides and its mechanism
作者:
赵叶子123陈智坤23王铮1吴桐123张颖萍23徐倩23
1.西安科技大学地质与环境学院,陕西西安 710054;2.陕西省西安植物园/陕西省植物研究所,陕西西安 710061;3.陕西省科学院土壤资源与生物技术应用重点实验室,陕西西安 710061
Author(s):
Zhao Yeziet al
关键词:
拟除虫菊酯微生物降解降解酶降解途径间苯氧基苯甲酸
Keywords:
-
分类号:
X592
DOI:
-
文献标志码:
A
摘要:
拟除虫菊酯被认为是有机磷农药的安全替代品,因此当有机磷农药被禁限使用时,其应用显著增加。目前,拟除虫菊酯销量约占世界杀虫剂总额的20%。这类农药的长期、广泛使用既带来了经济效益,也造成了环境污染,危害人类及其他非靶标生物。针对这一问题,已开发出多项修复技术,其中微生物法高效环保、成本低廉,已成为修复拟除虫菊酯污染的最优方法。笔者综述了最新分离的拟除虫菊酯降解菌株及其特性;拟除虫菊酯降解酶及其基因;拟除虫菊酯及其代谢产物(间苯氧基苯甲酸等)的降解途径。此外,还提出了拟除虫菊酯类农药微生物降解研究的发展趋势和需要进一步解决的问题。
Abstract:
-

参考文献/References:

[1]Smith T M,Stratton G W. Effects of synthetic pyrethroid insecticides on nontarget organisms[J]. Residue Reviews,1986,97:93-120.
[2]Kaviraj A,Gupta A. Biomarkers of type Ⅱ synthetic pyrethroid pesticides in freshwater fish[J]. BioMed Research International,2014(9):928063.
[3]Laskowski D A. Physical and chemical properties of pyrethroids[J]. Reviews of Environmental Contamination and Toxicology,2002,174:49-170.
[4]Chrustek A,Holyńska-Iwan I,Dziembowska I,et al. Current research on the safety of pyrethroids used as insecticides[J]. Medicina,2018,54(4):61.
[5]Kuivila K M,Hladik M L,Ingersoll C G,et al. Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas[J]. Environmental Science & Technology,2012,46(8):4297-4303.
[6]Gammon D W,Liu Z,Chandrasekaran A,et al. Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed type Ⅰ/Ⅱ mode of action[J]. Pest Management Science,2019,75(4):1190-1197.
[7]Ye X Q,Pan W Y,Zhao S L,et al. Relationships of pyrethroid exposure with gonadotropin levels and pubertal development in Chinese Boys[J]. Environmental Science & Technology,2017,51(11):6379-6386.
[8]Navarrete-Meneses M,Pérez-Vera P. Pyrethroid pesticide exposure and hematological cancer:epidemiological,biological and molecular evidence[J]. Reviews on Environmental Health,2019,34(2):197-210.
[9]Zepeda-Arce R,Rojas-García A E,Benitez-Trinidad A,et al. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides[J]. Environmental Toxicology,2017,32(6):1754-1764.
[10]Huang Y C,Xiao L J,Li F Y,et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid:a review[J]. Molecules,2018,23(9):2313.
[11]夏晓华,张林霞,司松波,等. 高效氯氟氰菊酯对泥鳅的急性毒性及生理毒性[J]. 江苏农业科学,2013,41(6):270-272.
[12]国家卫生健康委员会,中华人民共和国农业农村部,国家市场监督管理总局. 食品安全国家标准食品中农药最大残留限量:GB 2763—2019[S]. 北京:中国标准出版社,2019.
[13]EU. Amending annexes Ⅱ,Ⅲ and Ⅴ to regulation (EC):396/2005[S]. EU,2005.
[14]Yang J J,Feng Y M,Zhan H,et al. Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of d-phenothrin[J]. Frontiers in Microbiology,2018,9:1003.
[15]Kaufman D D,Haynes S C,Jordan E G,et al. Permethrin degradation in soil and microbial cultures[J]. American Chemical Society,1977,42:147-161.
[16]Maloney S E,Maule A,Smith A R. Microbial transformation of the pyrethroid insecticides:permethrin,deltamethrin,fastac,fenvalerate,and fluvalinate[J]. Applied and Environmental Microbiology,1988,54(11):2874-2876.
[17]Hu K D,Deng W Q,Zhu Y T,et al. Simultaneous degradation of β-cypermethrin and 3-phenoxybenzoic acid by Eurotium cristatum ET1,a novel “golden flower fungus” strain isolated from Fu Brick Tea[J]. Microbiology Open,2018,8(7):e776.
[18]孙丽娜,黄开华,高新华,等. 具氯氰菊酯降解功能的植物内生细菌分离鉴定及降解特性研究[J]. 农业环境科学学报,2020,39(1):70-77.
[19]Zhao J Y,Chi Y L,Xu Y C,et al. Co-metabolic degradation of β-cypermethrin and 3-phenoxybenzoic acid by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4[J]. PLoS One,2016,11(11):e0166796.
[20]Tian J W,Long X F,Zhang S,et al. Screening cyhalothrin degradation strains from locust epiphytic bacteria and studying Paracoccus acridae SCU-M53 cyhalothrin degradation process[J]. Environmental Science and Pollution Research International,2018,25(12):11505-11515.
[21]王若瑜,曹明,陈晶瑜.大曲中氯氟氰菊酯降解菌的分离筛选及特性研究[J]. 中国酿造,2020,39(3):21-25.
[22]Birolli W G,Alvarenga N,Seleghim M H,et al. Biodegradation of the pyrethroid pesticide esfenvalerate by Marine-Derived fungi[J]. Marine Biotechnology,2016,18(4):511-520.
[23]Akbar S,Sultan S,Kertesz M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics[J]. Current Microbiology,2015,70(1):75-84.
[24]Zhao H,Geng Y,Chen L,et al. Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil[J]. Canadian Journal of Microbiology,2013,59(5):311-317.
[25]虞云龙,宋凤鸣,郑重,等. 一株广谱性农药降解菌(Alcaligenes sp.)的分离与鉴定[J]. 浙江农业大学学报,1997(2):3-7.
[26]陈锐,瞿佳,孙晓宇,等. 氯氰菊酯降解菌草酸青霉SSCL-5分离鉴定及降解特性[J]. 生物技术通报,2020,36(6):120-127.
[27]Chen S H,Deng Y Y,Chang C Q,et al. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils[J]. Journal of Agricultural and Food Chemistry,2014,62(10):2147-2157.
[28]Chen S H,Deng Y Y,Chang C Q,et al. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19[J]. Scientific Reports,2015,5(1):8784.
[29]Pérez-Fernández V,García M A,Marina M L. Characteristics and enantiomeric analysis of chiral pyrethroids[J]. Journal of Chromatography A,2010,1217(7):968-989.
[30]张亚杰,李劭彤,李朝阳,等. 菊酯农药微生物降解的异构体选择性特征[J]. 江苏农业科学,2019,47(10):278-280,290.
[31]Lee S,Gan J Y,Kim J S,et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry,2004,23(1):1-6.
[32]Lan W S,Gu J D,Zhang J L,et al. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium[J]. International Biodeterioration & Biodegradation,2006,58(2):70-76.
[33]Paingankar M,Jain M,Deobagkar D. Biodegradation of allethrin,a pyrethroid insecticide,by an Acidomonas sp.[J]. Biotechnology Letters,2005,27(23/24):1909-1913.
[34]Zhan H,Wang H S,Liao L S,et al. Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14[J]. Frontiers in Microbiology,2018,9(2):98.
[35]Tang J,Hu Q,Lei D,et al. Characterization of deltamethrin degradation and metabolic pathway by co-culture of Acinetobacter junii LH-1-1 and Klebsiella pneumoniae BPBA052[J]. AMB Express,2020,10(1):106.
[36]Ma Y,Chen L S,Qiu J G. Biodegradation of beta-cypermethrin by a novel Azoarcus indigens strain HZ5[J]. Journal of Environmental Science and Health,2013,48(10):851-859.
[37]黄文文,刘晶晶,叶美玲,等. 甲氰菊酯降解菌Z1-3的分离鉴定及讲解特性[J]. 西北农林科技大学学报(自然科学版),2010(10):103-109,114.
[38]Sundaram S,Das M T,Thakur I S. Biodegradation of cypermethrin by Bacillus sp.in soil microcosm and in-vitro toxicity evaluation on human cell line[J]. International Biodeterioration & Biodegradation,2013,77(1):39-44.
[39]Liu F F,Chi Y L,Wu S,et al. Simultaneous degradation of cypermethrin and its metabolite,3-phenoxybenzoic acid,by the cooperation of Bacillus licheniformis B-1 and Sphingomonas sp. SC-1[J]. Journal of Agricultural and Food Chemistry,2014,62(33):8256-8262.
[40]Akbar S,Sultan S,Kertesz M. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils[J]. Journal of Basic Microbiology,2015,55(7):819-829.
[41]Tiwary M,Dubey A K. Cypermethrin bioremediation in presence of heavy metals by a novel heavy metal tolerant strain,Bacillus sp. AKD1[J]. International Biodeterioration & Biodegradation,2016,108(3):42-47.
[42]Panka J,Sharma A,Gangola S,et al. Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field[J]. 3 Biotech,2016,6(1):45.
[43]Lee Y S,Lee J H,Hwang E J,et al. Characterization of biological degradation cypermethrin by Bacillus amyloliquefaciens AP01[J]. Journal of Applied Biological Chemistry,2016,59(1):9-12.
[44]苏宏南,陈切希,赵甲元,等. 微生物共培养降解β-氯氰菊酯的适宜条件[J]. 食品与发酵工业,2018,44(7):8-12.
[45]Gangola S,Sharma A,Bhatt P,et al. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin[J]. Scientific Reports,2018,8(1):12755.
[46]Hu W,Lu Q Q,Zhong G H,et al. Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01[J]. Applied Sciences-Basel,2019,9(3):e414-e477.
[47]Tang J,Liu B,Chen T T,et al. Screening of a beta-cypermethrin-degrading bacterial strain Brevibacillus parabrevis BCP-09 and its biochemical degradation pathway[J]. Biodegradation,2018,29(6):525-541.
[48]Chen S H,Dong Y H,Chang C Q,et al. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway[J]. Bioresource Technology,2013,132(1):16-23.
[49]Zhang S B,Yin L B,Liu Y,et al. Cometabolic biotransformation of fenpropathrin by Clostridium species strain ZP3[J]. Biodegradation,2011,22(5):869-875.
[50]廖敏,张海军,谢晓梅.拟除虫菊酯类农药残留降解菌产气肠杆菌的分离、鉴定及降解特性研究[J]. 环境科学,2009,30(8):2445-2451.
[51]张松柏,张德咏,罗香文,等. 一株高效降解氯氰菊酯细菌的分离鉴定及降解特性[J]. 中国农学通报,2009,25(3):265-270.
[52]Hu G P,Zhao Y,Song F Q,et al. Isolation,identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain,FLQ-11-1[J]. Research in Microbiology,2014,165(2):110-118.
[53]Tallur P N,Megadi V B,Ninnekar H Z. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1[J]. Biodegradation,2008,19(1):77-82.
[54]Wang B Z,Ma Y,Zhou W Y,et al. Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1[J]. World Journal of Microbiology & Biotechnology,2011,27(10):2315-2324.
[55]Chen S H,Hu M Y,Liu J J,et al. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01[J]. Journal of Hazardous Materials,2011,187(1/2/3):433-440.
[56]Saikia N,Das S K,Patel B K,et al. Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1[J]. Biodegradation,2005,16(6):581-589.
[57]Zhang C,Wang S H,Yan Y C. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production[J]. Bioresource Technology,2011,102(14):7139-7146.
[58]Selvam A,Thatheyus J,Vidhya R. Biodegradation of the synthetic pyrethroid,fenvalerate by Pseudomonas viridiflava[J]. American Journal of Microbiological Research,2013,1(2):32-38.
[59]Song H H,Zhou Z R,Liu Y X,et al. Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41[J]. Current Microbiology,2015,71(3):326-332.
[60]Zhang X Q,Hao X X,Huo S S,et al. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant[J]. Archives of Microbiology,2019,201(9):1207-1217.
[61]Zhang C,Jia L,Wang S H,et al. Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity[J]. Bioresource Technology,2010,101(10):3423-3429.
[62]Cycoń M,Zmijowska A,Piotrowska-Seget Z. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens[J]. International Journal of Environmental Science and Technology,2014,11(5):1305-1316.
[63]Prashar P. Isolation and identification of cypermethrin degrading Serratia nematodiphila from cauliflower rhizosphere[J]. International Journal of Pharmtech Research,2015,7(1):217-230.
[64]Guo P,Wang B Z,Hang B J,et al. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase[J]. International Biodeterioration & Biodegradation,2009,63(8):1107-1112.
[65]崔志峰,汪华,王渭霞,等. 氯氰菊酯降解菌CY22-7的分离鉴定及降解特性研究[J]. 环境污染与防治,2009,31(11):35-38,43.
[66]Chen S H,Yang L,Hu M Y,et al. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils[J]. Applied Microbiology and Biotechnology,2011,90(2):755-767.
[67]Saikia N,Gopal M. Biodegradation of beta-cyfluthrin by fungi[J]. Journal of Agricultural and Food Chemistry,2004,52(5):1220-1223.
[68]秦坤,朱鲁生,王金花.氯氰菊酯降解真菌的筛选及其降解特性研究[J]. 环境工程学报,2010,4(4):950-954.
[69]Chen S H,Luo J J,Hu M Y,et al. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment[J]. PLoS One,2012,7(2):e30862.
[70]Chen S H,Hu Q B,Hu M Y,et al. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde[J]. Bioresource Technology,2011,102(17):8110-8116.
[71]Palmer-Brown W,de Melo S P,Murphy C D. Cyhalothrin biodegradation in Cunninghamella elegans[J]. Environmental Science and Pollution Research International,2019,26(2):1414-1421.
[72]张久刚,闫艳春. 一株氯氰菊酯降解菌16S rDNA,gyrB和GyrB的系统发育分析[J]. 生物信息学,2008,6(2):55-58.
[73]张玲玲,崔德杰,洪永聪,等. 氯氰菊酯降解放线菌的分离与筛选[J]. 青岛农业大学学报(自然科学版),2008,25(4):280-284.
[74]Lin Q S,Chen S H,Hu M Y,et al. Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge[J]. International Journal of Environmental Science and Technology,2011,8(1):45-56.
[75]Chen S H,Lai K P,Li Y A,et al. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01[J]. Applied Microbiology and Biotechnology,2011,90(4):1471-1483.
[76]Chen S H,Geng P,Xiao Y,et al. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01[J]. Applied Microbiology and Biotechnology,2012,94(2):505-515.
[77]Arbeli Z,Fuentes C L. Accelerated biodegradation of pesticides:an overview of the phenomenon,its basis and possible solutions and a discussion on the tropical dimension[J]. Crop Protection,2007,26(12):1733-1746.
[78]Maloney S E,Maule A,Smith A R. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus[J]. Applied and Environmental Microbiology,1993,59(7):2007-2013.
[79]Liang W Q,Wang Z Y,Li H,et al. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11[J]. Journal of Agricultural and Food Chemistry,2005,53(19):7415-7420.
[80]Wu P C,Liu Y H,Wang Z Y,et al. Molecular cloning,purification,and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112[J]. Journal of Agricultural and Food Chemistry,2006,54(3):836-842.
[81]Tang A X,Liu H,Liu Y Y,et al. Purification and characterization of a novel β-Cypermethrin-degrading aminopeptidase from Pseudomonas aeruginosa GF31[J]. Journal of Agricultural and Food Chemistry,2017,65(43):9412-9418.
[82]Rajavat A S,Rai S,Pandiyan K,et al. Sustainable use of the spent mushroom substrate of Pleurotus Florida for production of lignocellulolytic enzymes[J]. Journal of Basic Microbiology,2020,60(2):173-184.
[83]Li G,Wang K,Liu Y H. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome[J]. Microbial Cell Factories,2008,7(1):38.
[84]Wang B Z,Guo P,Hang B J,et al. Cloning of a novel Pyrethroid-Hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product[J]. Applied and Environmental Microbiology,2009,75(17):5496-5500.
[85]Zhai Y,Li K,Song J L,et al. Molecular cloning,purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1[J]. Journal of Hazardous Materials,2012,221-222(4):206-212.
[86]Fan X J,Liu X L,Huang R,et al. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach[J]. Microbial Cell Factories,2012,11(1):33.
[87]Ruan Z Y,Zhai Y,Song J L,et al. Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1[J]. PLOS One,2013,8(10):e77329.
[88]Chen S H,Lin Q S,Xiao Y,et al. Monooxygenase,a novel beta-cypermethrin degrading enzyme from Streptomyces sp.[J]. PLoS One,2013,8(9):e75450.
[89]Wei T,Feng S X,Shen Y L,et al. Characterization of a novel thermophilic pyrethroid-hydrolyzing carboxylesterase from Sulfolobus tokodaii into a new family[J]. Journal of Molecular Catalysis B-Enzymatic,2013,97(1):225-232.
[90]Cai X H,Wang W,Lin L,et al. Autotransporter domain-dependent enzymatic analysis of a novel extremely thermostable carboxylesterase with high biodegradability towards pyrethroid pesticides[J]. Scientific Reports,2017,7(1):3461.
[91]Fan X J,Liang W Q,Li Y F,et al. Identification and immobilization of a novel cold-adapted esterase,and its potential for bioremediation of pyrethroid-contaminated vegetables[J]. Microbial Cell Factories,2017,16(1):149.
[92]Luo X W,Zhang D Y,Zhou X G,et al. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene,Est3385,from Rhodopseudomonas palustris PSB-S[J]. Scientific Reports,2018,8(1):7384.
[93]Hong Y F,Jin Z,Qing H,et al. Characterization of a fenpropathrin-degreding strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin[J]. Journal of Environmental Management,2010,91(11):2295-2300.
[94]Stratton G W,Corke C T. Toxicity of the insecticide permethrin and some degradation products towards algae and cyanobacteria[J]. Environmental Pollution,1982,29(1):71-80.
[95]Zhao J Y,Chen X F,Jia D Y,et al. Identification of fungal enzymes involving 3-phenoxybenzoic acid degradation by using enzymes inhibitors and inducers[J]. MethodsX,2020,7(1):100772.
[96]Halden R U,Tepp S M,Halden B G,et al. Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains[J]. Applied and Environmental Microbiology,1999,65(8):3354-3359.
[97]Dewailly E,Forde M,Robertson L,et al. Evaluation of pyrethroid exposures in pregnant women from 10 Caribbean countries[J]. Environment International,2014,63:201-206.
[98]Sun H,Chen W,Xu X L,et al. Pyrethroid and their metabolite,3-phenoxybenzoic acid showed similar (anti)estrogenic activity in human and rat estrogen receptor α-mediated reporter gene assays[J]. Environmental Toxicology and Pharmacology,2014,37(1):371-377.
[99]Tang J,Liu B,Shi Y,et al. Isolation,identification,and fenvalerate-degrading potential of Bacillus licheniformis CY-012[J]. Biotechnology & Biotechnological Equipment,2018,32(3):574-582.
[100]Zhu Y T,Li J L,Yao K,et al. Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation[J]. Applied Microbiology and Biotechnology,2016,100(22):9773-9786.
[101]Engesser K H,Fietz W,Fischer P,et al. Dioxygenolytic cleavage of aryl ether bonds:1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3-and 4-carboxy biphenyl ether degradation[J]. FEMS Microbiology Letters,1990,57(3):317-321.
[102]Zhang J,Lang Z F,Zheng J W,et al. Sphingobium jiangsuense sp. nov.,a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62(4):800-805.
[103]袁怀瑜.黑曲霉YAT1降解氯氰菊酯及3-苯氧基苯甲酸特性和途径的初步研究[D]. 雅安:四川农业大学,2012:1-14.
[104]Deng W Q,Lin D R,Yao K,et al. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin[J]. Applied Microbiology and Biotechnology,2015,99(19):8187-8198.
[105]徐冉,魏宁,黄虹,等. 天然除虫菊酯与拟除虫菊酯的对比及发展建议[J]. 环境污染与防治,2019,41(9):1114-1119.

相似文献/References:

[1]王军华,王易芬,陈蕾蕾,等.除草剂草甘膦微生物降解技术研究进展[J].江苏农业科学,2016,44(04):8.
 Wang Junhua,et al.Research progress on microbial degradation of glyphosate[J].Jiangsu Agricultural Sciences,2016,44(17):8.
[2]徐皓,秦公伟,王哲.GC-MS/MS法分析不同产地延胡索中有机氯、拟除虫菊酯农药残留[J].江苏农业科学,2016,44(05):355.
 Xu Hao,et al.Analysis of organochlorine and pyrethroid pesticide residues in Rhizoma Corydalis from different producing areas by GC-MS/MS method[J].Jiangsu Agricultural Sciences,2016,44(17):355.
[3]孙长恩,洪华,潘虹,等.化学杀虫剂中9种拟除虫菊酯检测方法[J].江苏农业科学,2014,42(04):273.
 Sun Changen,et al.Determination of 9 kinds of pyrethroids[J].Jiangsu Agricultural Sciences,2014,42(17):273.
[4]张春花,单治国,蒋智林,等.4种微生物对烟叶中甲霜灵残留动态的影响[J].江苏农业科学,2018,46(14):168.
 Zhang Chunhua,et al.Impact of four species of microorganisms on dynamics of metalaxyl residues in tobacco leaves[J].Jiangsu Agricultural Sciences,2018,46(17):168.
[5]权金盼,李玉妹,龙宏艳,等.链霉菌B221与地衣芽孢杆菌NJU-1411-1固体发酵废弃羊毛角蛋白工艺优化和工业化产品分析[J].江苏农业科学,2019,47(02):153.
 Quan Jinpan,et al.Optimization of wool keratin solid state fermentation process by Bacillus licheniformis NJU-1411-1 and Streptomyces sp. B221 and industrial keratin product analysis[J].Jiangsu Agricultural Sciences,2019,47(17):153.
[6]张亚杰,李劭彤,李朝阳,等.菊酯农药微生物降解的异构体选择性特征[J].江苏农业科学,2019,47(10):278.
 Zhang Yajie,et al.Selective degradation of pyrethroid pesticides to enantiomers by a predominant degrading strain[J].Jiangsu Agricultural Sciences,2019,47(17):278.

备注/Memo

备注/Memo:
收稿日期:2021-02-01
基金项目:西安市科技局项目(编号:2017127SF/SF021);。
作者简介:赵叶子(1992—),女,陕西西安人,硕士研究生,主要从事微生物有机污染修复研究。E-mail:jzzszyj8943@163.com。
通信作者:王铮,博士,副教授,主要从事环境评价与水处理研究。E-mail:Wang_zheng1992@126.com。
更新日期/Last Update: 2021-09-05