|本期目录/Table of Contents|

[1]薛醒,赵潇彤,徐丽娜,等.镉胁迫下硅对玉米生长的缓解效应[J].江苏农业科学,2023,51(13):246-251.
 Xue Xing,et al.Alleviating effect of silicon on maize growth under cadmium stress[J].Jiangsu Agricultural Sciences,2023,51(13):246-251.
点击复制

镉胁迫下硅对玉米生长的缓解效应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第13期
页码:
246-251
栏目:
资源与环境
出版日期:
2023-07-05

文章信息/Info

Title:
Alleviating effect of silicon on maize growth under cadmium stress
作者:
薛醒赵潇彤徐丽娜李丽杰薛惠云张志勇
河南科技学院生命科技学院,河南新乡 453003
Author(s):
Xue Xinget al
关键词:
玉米镉胁迫植株形态生理特性
Keywords:
-
分类号:
S513
DOI:
-
文献标志码:
A
摘要:
为了探讨外源硅对镉胁迫下玉米幼苗的生长缓解效应,以豫单9953为试验材料,以浓度为318 mg/kg的硅酸钠和浓度为35 mg/kg的氯化镉分别溶解于水后均匀混拌于土壤中,进行土壤盆栽试验。对玉米苗期地上部分株高、叶面积、SPAD值、光合速率、荧光参数和地下部的根系参数以及可溶性蛋白含量和电导率等指标进行测定。结果表明,硅能显著缓解玉米苗期镉的胁迫。与对照相比,镉处理组的玉米株高、叶面积、叶片和根系的干质量分别下降1870%、33.40%、39.13%和42.86%,硅的施用改善了镉的抑制,与镉处理相比分别增加了7.66%、11.05%和3333%、25.00%;硅的施用提高了镉胁迫下总根系长度、体积和表面积;玉米幼苗的光合特性受到镉的胁迫,硅的施用降低了镉对SPAD值和光合速率的胁迫,与镉处理相比分别提高了15.64%和39.49%,同时也改善了镉对玉米叶绿素荧光的抑制,增加了叶片可溶性蛋白含量,降低了叶片相对电导率。硅能显著改善镉对玉米幼苗地上部和地下部的抑制作用,促进根系生长,增强光合作用,调节生理代谢过程,降低地下根系对镉的吸收和转运,提高玉米对镉的耐受能力,为缓解镉对玉米幼苗的胁迫提供栽培技术及理论基础。
Abstract:
-

参考文献/References:

[1]杨红霞,陈俊良,刘崴. 镉对植物的毒害及植物解毒机制研究进展[J]. 江苏农业科学,2019,47(2):1-8.
[2]李启权,张少尧,代天飞,等. 成都平原农地土壤镉含量特征及来源研究[J]. 农业环境科学学报,2014,33(5):898-906.
[3]易宗娓,何作顺. 镉污染与痛痛病[J]. 职业与健康,2014,30(17):2511-2513.
[4]姜瑛,魏畅,焦秋娟,等. 外源硅对镉胁迫下玉米生理参数及根系构型分级的影响[J]. 草业学报,2022,31(9):139-154.
[5]曲丹阳,顾万荣,李丽杰,等. 壳聚糖对镉胁迫下玉米幼苗叶片AsA-GSH循环的调控效应[J]. 植物科学学报,2018,36(2):291-299.
[6]Wu Z C,Zhao X H,Sun X C,et al. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress[J]. Chemosphere,2015,138:526-536.
[7]代瑞熙,徐伟平.中国玉米增产潜力预测[J]. 农业展望,2022,18(3):41-49.
[8]Ranjan A,Sinha R,Bala M,et al. Silicon-mediated abiotic and biotic stress mitigation in plants:underlying mechanisms and potential for stress resilient agriculture[J]. Plant Physiology and Biochemistry,2021,163:15-25.
[9]Ali M,Afzal S,Parveen A,et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+uptake in maize (Zea mays L.) cultivars exposed to salinity stress[J]. Plant Physiology and Biochemistry,2021,158:208-218.
[10]石彦召. 增施硅肥对玉米的抗倒性和产量的影响研究[J]. 农业科技通讯,2013(3):48-50.
[11]朱从桦. 低磷胁迫下硅、磷配施对玉米养分吸收利用及产量形成的影响[D]. 雅安:四川农业大学,2016:23-25.
[12]张嘉莉,朱从桦,豆攀,等. 硅、磷配施对玉米苗期生长及氮磷钾积累的影响[J]. 中国生态农业学报,2017,25(5):677-688.
[13]刘冬. 硅对植烟土壤中镉形态、烤烟镉积累的影响[D]. 贵阳:贵州大学,2015:24-35.
[14]徐应星,李军.硅和磷配合施入对镉污染土壤的修复改良[J]. 生态环境学报,2010,19(2):340-343.
[15]彭华,邓凯,石宇,等. 连续施硅对双季稻镉硅累积效应的影响[J]. 环境科学,2022,43(8):4271-4281.
[16]王耀晶,马樱馨,李彩,等. 镉胁迫下硅对不同品种水稻镉积累的影响[J]. 沈阳农业大学学报,2020,51(3):364-369.
[17]Lukacˇová Z,vubová R,Kohanová J,et al. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation,cell distribution,antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development[J]. Plant Growth Regulation,2013,70(1):89-103.
[18]王玉萍,常宏,李成,等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响[J]. 草业学报,2016,25(5):40-48.
[19]赵萍,瞿华香,张玉烛. 锌对镉胁迫下水稻幼苗镉吸收转运及根系形态的影响[J]. 广东农业科学,2017,44(5):99-105.
[20]Vaculík M,Landberg T,Greger M,et al. Silicon modifies root anatomy,and uptake and subcellular distribution of cadmium in young maize plants[J]. Annals of Botany,2012,110(2):433-443.
[21]Barberon M,Dubeaux G,Kolb C,et al. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(22):8293-8298.
[22]黄秋婵,黎晓峰,李耀燕. 镉对水稻的毒害效应及耐性机制的研究进展[J]. 安徽农业科学,2007,35(7):1971-1974.
[23]关昕昕,严重玲,刘景春,等. 钙对镉胁迫下小白菜生理特性的影响[J]. 厦门大学学报(自然科学版),2011,50(1):132-137.
[24]Upadhyay R K,Panda S K.Copper-induced growth inhibition,oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.)[J]. Comptes Rendus Biologies,2009,332(7):623-632.
[25]李天哲,陈爱婷,李彩,等. 镉胁迫下硅对水稻幼苗生长与生理响应的影响[J]. 农业环境科学学报,2018,37(6):1072-1078.
[26]Alvarez J,Datnoff L E.The economic potential of silicon for integrated management and sustainable rice production[J]. Crop Protection,2001,20(1):43-48.
[27]Chen D M,Chen D Q,Xue R R,et al. Effects of boron,silicon and their interactions on cadmium accumulation and toxicity in rice plants[J]. Journal of Hazardous Materials,2019,367:447-455.
[28]陈秀芳,赵秀兰,夏章菊,等. 硅缓解小麦镉毒害的效应研究[J]. 西南农业大学学报(自然科学版),2005,27(4):447-450.
[29]王怡璇,刘杰,唐云舒,等. 硅对水稻镉转运的抑制效应研究[J]. 生态环境学报,2016,25(11):1822-1827.
[30]Huang J L,He F,Cui K H,et al. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter[J]. Field Crops Research,2008,105(1/2):70-80.
[31]宇克莉,孟庆敏,邹金华. 镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响[J]. 华北农学报,2010,25(3):118-123.
[32]朱华兰. 镉胁迫下不同镁水平对玉米幼苗生长的影响及生理机制的研究[D]. 重庆:西南大学,2013:19-20.
[33]孟瑶. 氯化血红素(Hemin)增强玉米耐镉胁迫的生理生态机制及其大田验证研究[D]. 哈尔滨:东北农业大学,2020:38-39,43.
[34]郭延平,周慧芬,曾光辉,等. 高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响[J]. 应用生态学报,2003,14(6):867-870.
[35]Demmig-Adams B,Adams W W III. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
[36]唐星林,金洪平,周晨,等. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响[J]. 中南林业科技大学学报,2019,39(9):102-108.
[37]惠俊爱,党志,叶庆生. 镉胁迫对玉米光合特性的影响[J]. 农业环境科学学报,2010,29(2):205-210.
[38]王琴儿,曾英,李丽美. 镉毒害对水稻生理生态效应的研究进展[J]. 北方水稻,2007,37(4):12-16.
[39]李丽,张铭璇,杨舒涵,等. 镉胁迫下硅肥对盐地碱蓬幼苗生理特性的影响[J]. 中国林副特产,2020(4):17-19,22.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(13):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(13):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(13):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(13):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(13):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(13):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(13):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(13):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(13):77.
[11]孙天国,孙玉斌.外源亚精胺对镉胁迫下玉米幼苗抗氧化代谢的调控效应[J].江苏农业科学,2019,47(16):103.
 Sun Tianguo,et al.Regulating effects of exogenous spermidine on antioxidant metabolism of maize seedlings under cadmium stress[J].Jiangsu Agricultural Sciences,2019,47(13):103.

备注/Memo

备注/Memo:
收稿日期:2022-09-08
基金项目:河南省科技攻关项目(编号222102110185);河南省高校科技创新团队支持计划(编号:21IRTSTHN023)。
作者简介:薛醒(2000—),女,河南南阳人,硕士研究生,研究方向为作物高产高效栽培理论与技术。E-mail:3220491590@qq.com。
通信作者:徐丽娜,博士,讲师,主要从事作物高产高效栽培理论与技术研究。E-mail:xulina_1023@163.com。
更新日期/Last Update: 2023-07-05