|本期目录/Table of Contents|

[1]白卓青,张化永,邹恒超,等.冀西北山地森林白桦分枝微量元素相对重要性研究[J].江苏农业科学,2023,51(21):146-154.
 Bai Zhuoqing,et al.Study on relative importance of trace elements in forest branches of Betula platyphylla in mountains area of northwestern Hebei[J].Jiangsu Agricultural Sciences,2023,51(21):146-154.
点击复制

冀西北山地森林白桦分枝微量元素相对重要性研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第21期
页码:
146-154
栏目:
园艺与林学
出版日期:
2023-11-05

文章信息/Info

Title:
Study on relative importance of trace elements in forest branches of Betula platyphylla in mountains area of northwestern Hebei
作者:
白卓青张化永邹恒超黄头生郑玉甄欣欣
华北电力大学工程生态学与非线性科学研究中心,北京102206
Author(s):
Bai Zhuoqinget al
关键词:
白桦微量元素分枝长度分枝直径分枝生物量相对重要性
Keywords:
-
分类号:
S792.153;S718.5
DOI:
-
文献标志码:
A
摘要:
微量元素对植物各部分结构的生长发育都具有重要的调控作用,在森林生态学中一直受到广泛关注。然而,微量元素对分枝生长的影响程度尚不明确。以10株冀北山地优势树种白桦为研究对象,对其分枝长度、直径、生物量及分枝中7种微量元素(Mn、B、Fe、Zn、Ni、Mo和Cu)含量进行测量和分析。采用相关性热图,分析微量元素之间、微量元素与分枝性状之间的相互影响。使用3种机器学习模型(随机森林、BP神经网络和KNN模型)来量化7种微量元素对枝长、枝径和枝生物量的相对重要性。结果表明,微量元素与枝长、枝径和枝生物量相关性较强,均为极显著正相关(P<0.001)。随机森林模型对枝长(r2=0.765、P<0.01)、枝径(r2=0.846、P<001)和枝生物量(r2=0949、P<0.01)的预测精度相对更高,是量化微量元素对树冠生长影响程度的最佳模型。随机森林特征值排序结果显示,影响3种分枝特征最重要的微量元素各不相同,其中,Mn对枝长影响的重要性程度最高(0.338),Zn对枝生物量影响的重要性程度最高(0.316),而Ni对枝径影响的重要性程度最高(0.257)。该研究为评估白桦的生长模式提供了一种有效的方法,并提高了对微量元素如何调节树枝性状和营养分配的认识。
Abstract:
-

参考文献/References:

[1]Hoshika Y,Watanabe M,Inada N,et al. Growth and leaf gas exchange in three birch species exposed to elevated ozone and CO2 in summer [J]. Water Air and Soil Pollution,2012,223(8):5017-5025.
[2]Sabater A M,Ward H C,Hill T C,et al. Transpiration from subarctic deciduous woodlands:environmental controls and contribution to ecosystem evapotranspiration[J]. Ecohydrology,2020,13(3):2190-2238.
[3]姜勇. 森林生态系统微量元素循环及其影响因素[J]. 应用生态学报,2009,20(1):197-204.
[4]罗赵慧,田大伦,田红灯,等. 湘潭锰矿废弃地栾树人工林微量元素生物循环[J]. 生态学报,2013,33(20):6517-6525.
[5]Dadkhah-Aghdash H,Pehlivan N.The organ level atmospheric element signatures of native Pistacia atlantica in semi-arid forests linked to the Ilam Gas Refinery,Iran[J]. Plant and Soil,2022,475(1):293-308.
[6]Ciadamidaro L,Madejón E,Puschenreiter M,et al. Growth of Populus alba and its influence on soil trace element availability[J]. Science of the Total Environment,2013,454/455:337-347.
[7]Merchant S S. The elements of plant micronutrients[J]. Plant Physiology,2010,154(2):512-515.
[8]Leyser O. The control of shoot branching:an example of plant information processing[J]. Plant,Cell and Environment,2009,32(6):694-703.
[9]Sun X P,Luo Y J,Han G Q,et al. Effects of semi-decomposed weeds as substrate on plant growth,antioxidant capacity,and leaf nutrition of plum trees[J]. Journal of Plant Nutrition,2023,46(6):823-834.
[10]Brendová K,Kubátová P,Száková J,et al. Trace element leaching from contaminated willow and poplar biomass—A laboratory study of potential risks[J]. Biomass and Bioenergy,2018,112:11-18.
[11]Cao Y B,Wang B T,Wei T T,et al. Ecological stoichiometric characteristics and element reserves of three stands in a closed forest on the Chinese Loess Plateau[J]. Environmental Monitoring and Assessment,2016,188(2):1-14.
[12]Hytonen J,Beuker E,Vihera-Aarnio A. Biomass allocation and nutrient content of hybrid aspen clones grown on former agricultural land in Finland[J]. Scandinavian Journal of Forest Research,2020,35(3/4):147-155.
[13]Bronisz K,Mehtatalo L.Seemingly unrelated mixed-effects biomass models for young silver birch stands on post-agricultural lands[J]. Forests,2020,11(4):381-397.
[14]Kuiters A T,van der Sluijs L A M,Wytema G A. Selective bark-stripping of beech,Fagus sylvatica,by free-ranging horses[J]. Forest Ecology and Management,2006,222(1/2/3):1-8.
[15]Nissim W G,Palm E,Mancuso S,et al. Trace element partitioning in a poplar phytoextraction stand in relation to stem size[J]. Journal of Environmental Management,2019,247(11):688-697.
[16]Odabasi M,Tolunay D,Kara M,et al. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components[J]. Science of the Total Environment,2016,550(10):1010-1021.
[17]Domínguez M T,Madejón P,Maraón T,et al. Afforestation of a trace-element polluted area in SW Spain:woody plant performance and trace element accumulation[J]. European Journal of Forest Research,2010,129(1):47-59.
[18]刘广全,赵士洞,王浩,等. 锐齿栎林非同化器官营养元素含量的分布[J]. 生态学报,2001,21(3):422-429.
[19]Chalot M,Girardclos O,Ciadamidaro L,et al. Poplar rotation coppice at a trace element-contaminated phytomanagement site:a 10-year study revealing biomass production,element export and impact on extractable elements [J]. Science of the Total Environment,2020,699(13):24-60.
[20]Royer-Tardif S,Delagrange S,Nolet P,et al. Using macronutrient distributions within trees to define a branch diameter threshold for biomass harvest in sugar maple-dominated stands[J]. Forests,2017,8(2):41-47.
[21]Clemente J M,Martinez H E P,Pedrosa A W,et al. Boron,copper,and zinc affect the productivity,cup quality,and chemical compounds in coffee beans[J]. Journal of Food Quality,2018,24(28):1745-4557.
[22]Breidenbach J,Naesset E,Lien V,et al. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data[J]. Remote Sensing of Environment,2010,114(4):911-924.
[23]Fu Y Y,He H S,Hawbaker T J,et al. Evaluating k-nearest neighbor (KNN) imputation models for species-level aboveground forest biomass mapping in northeast China[J]. Remote Sensing,2019,11(17):20-40.
[24]Zhuang H,Ni Y,Kokot S. Combining HPLC-DAD and ICP-MS data for improved analysis of complex samples:classification of the root samples from Cortex mountain[J]. Chemometrics and Intelligent Laboratory Systems,2014,135(16):183-191.
[25]Sabzi S,Pourdarbani R,Rohban M H,et al. Classification of cucumber leaves based on nitrogen content using the hyperspectral imaging technique and majority voting[J]. Plants,2021,10(5):898-908.
[26]Saleem G,Akhtar M,Ahmed N,et al. Automated analysis of visual leaf shape features for plant classification[J]. Computers and Electronics in Agriculture,2019,157(16):270-280.
[27]李辉东,关德新,袁凤辉,等. BP人工神经网络模拟杨树林冠蒸腾[J]. 生态学报,2015,35(12):4137-4145.
[28]Raj K R,Kardam A,Arora J K,et al. Artificial Neural Network (ANN) design for Hg-Se interactions and their effect on reduction of Hg uptake by radish plant[J]. Journal of Radioanalytical and Nuclear Chemistry,2010,283(3):797-801.
[29]余朝林,杜华强,周国模,等. 毛竹林地上部分生物量遥感估算模型的可移植性[J]. 应用生态学报,2012,23(9):2422-2428.
[30]Peters J,Baets B D,Verhoest N E C,et al. Random forests as a tool for ecohydrological distribution modelling [J]. Ecological Modelling,2007,207(2/3/4):304-318.
[31]Klink A,Polechońska L,Dambiec M,et al. A comparative study on macro-and microelement bioaccumulation properties of leaves and bark of Quercus petraea and Pinus sylvestris[J]. Archives of Environmental Contamination and Toxicology,2018,74(1):71-79.
[32]王世航,卢宏亮,赵明松,等. 基于不同特征挖掘方法结合广义提升回归模型估测安徽省土壤pH[J]. 应用生态学报,2020,31(10):3509-3517.
[33]张雷,王琳琳,张旭东,等. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报,2014,34(3):650-659.
[34]Tian Y,Fu G. Quantifying plant species α-diversity using normalized difference vegetation index and climate data in alpine grasslands [J]. Remote Sensing,2022,14(19):5007-5017.
[35]Sellin A,Rohejaerv A,Rahi M.Distribution of vessel size,vessel density and xylem conducting efficiency within a crown of silver birch (Betula pendula)[J]. Trees,2008,22(2):205-216.
[36]Lin W S,Fan W W,Liu H R,et al. Classification of handheld laser scanning tree point cloud based on different KNN algorithms and random forest algorithm[J]. Forests,2021,12(3):292-302.
[37]Zhang X,He L,Zhang J,et al. Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA) [J]. Biosystems Engineering,2020,193(3):247-263.
[38]Cao L,Coops N,Sun Y,et al. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,148(2):114-129.
[39]Zhang J Y,Nie J Y,Kuang L X,et al. Geographical origin of Chinese apples based on multiple element analysis[J]. Journal of the Science of Food and Agriculture,2019,99(14):6182-6190.
[40]Du S H,Deng Z Q,Liu Y J,et al. Evaluation of surface water-groundwater interaction using environmental isotopes (D,18O and 222Rn) in Chongli Area,China[J]. Journal of Radioanalytical and Nuclear Chemistry,2019,321(1):303-311.
[41]Hao J Q,Lin Y,Ren G X,et al. Comprehensive benefit evaluation of conservation tillage based on BP neural network in the Loess Plateau [J]. Soil & Tillage Research,2021,205(10):47-84.
[42]Wen S,Zhang Q Y,Yin X C,et al. Design of plant protection UAV variable spray system based on neural networks [J]. Sensors,2019,19(5):11-22.
[43]El-Jendoubi H,Abadía J,Abadía A.Assessment of nutrient removal in bearing peach trees (Prunus persica L.Batsch) based on whole tree analysis[J]. Plant and Soil,2013,369(1):421-437.
[44]Rodríguez-Soalleiro R,Eimil-Fraga C,Gómez-García E,et al. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests,forest plantations and short rotation forestry[J]. Forest Ecosystems,2018,5:35.
[45]Wegiel A,Wegiel A,Polowy K,et al. The stock and content of micronutrients in aboveground biomass of Scots pine stands of different densities[J]. Journal of Elementology,2019,24(2):615-628.
[46]Vogel H,Schumacher M,Trüby P.Above ground biomass micronutrients in a seasonal subtropical forest[J]. Cerne,2015,21:175-182.
[47]Ray R,Mandal S,Gonzalez G,et al. Storage and recycling of major and trace element in mangroves [J]. Science of the Total Environment,2021,780(14):63-79.
[48]Xie Z L,Chen Y L,Lu D S,et al. Classification of land cover,forest,and tree species classes with ZiYuan-3 multispectral and stereo data[J]. Remote Sensing,2019,11(2):164-174.
[49]Breidenbach J,Naesset E,Gobakken T. Improving k-nearest neighbor predictions in forest inventories by combining high and low density airborne laser scanning data[J]. Remote Sensing of Environment,2012,117(2):358-365.
[50]Diao J,De R P,Lei X,et al. Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy[J]. Computers and Electronics in Agriculture,2012,80(2):105-114.
[51]Longo B L,Brüchert F,Becker G,et al. Predicting Douglas-fir knot size in the stand:a random forest model based on CT and field measurements[J]. Wood Science and Technology,2022,56(2):531-552.
[52]张莉,纪铭阳,胡宗玉,等. 基于随机森林和逻辑回归分类模型的烟叶精选品控指标筛选[J]. 江苏农业科学,2020,48(3):214-217.
[53]Rothpfeffer C,Karltun E. Inorganic elements in tree compartments of Picea abies—Concentrations versus stem diameter in wood and bark and concentrations in needles and branches[J]. Biomass & Bioenergy,2007,31(10):717-725.
[54]Zhu Y,Christakos G,Wang H,et al. Distribution,accumulation and health risk assessment of trace elements in Sargassum fusiforme[J]. Marine Pollution Bulletin,2022,174(11):31-55.
[55]Wu H X,Wu F B,Zhang G P,et al. Effect of cadmium on uptake and translocation of three microelements in cotton[J]. Journal of Plant Nutrition,2005,27(11):2019-2032.
[56]Rivelli A R,de Maria S,Puschenreiter M,et al. Accumulation of cadmium,zinc,and copper by Helianthus annuus L.:impact on plant growth and uptake of nutritional elements[J]. International Journal of Phytoremediation,2012,14(4):320-334.
[57]廉晓娟,王艳,梁新书,等. 不同施肥水平对设施番茄中微量元素吸收的影响[J]. 江苏农业科学,2020,48(16):197-200
[58]Lordkaew S,Dell B,Jamjod S,et al. Boron deficiency in maize[J]. Plant and Soil,2011,342(1):207-220.
[59]Ishka M R,Vatamaniuk O K. Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in Arabidopsis thaliana[J]. Plant Direct,2020,4(11):1-18.
[60]张家春,张珍明,刘盈盈,等. 高海拔地区土壤-党参系统微量元素富集特征[J]. 江苏农业科学,2016,44(11):450-453.

相似文献/References:

[1]庞海霞.汉中五彩米中微量元素的测定分析[J].江苏农业科学,2013,41(05):301.
 Pang Haixia.Determination and analysis of trace elements in colorful rice of Hanzhong area[J].Jiangsu Agricultural Sciences,2013,41(21):301.
[2]巩万合,杨连飞,刘蓉蓉,等.江苏南通地区耕层土壤微量元素含量与有效性评价[J].江苏农业科学,2014,42(11):378.
 Gong Wanhe,et al(78).Contents and availability evaluation of topsoil available trace elements in Nantong,Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(21):378.
[3]刘水英,江海,李新生,等.火焰原子吸收光谱法测定彩色甘薯及其土壤中6种微量元素[J].江苏农业科学,2014,42(11):344.
 Liu Shuiying,et al().Determination of six trace elements in purple sweet potato and its soil using flame atomic absorption spectroscopy[J].Jiangsu Agricultural Sciences,2014,42(21):344.
[4]吴云影,庄东红,李张伟.新鲜凤凰单枞茶叶与成品凤凰单枞茶叶微量元素含量比较[J].江苏农业科学,2014,42(11):359.
 Wu Yunying,et al(9).Comparison of trace elements contents between fresh and processed Phoenix Dancong tea[J].Jiangsu Agricultural Sciences,2014,42(21):359.
[5]杨成君,刘桂丰,张小焕,等.盐胁迫下耐盐白桦家系筛选[J].江苏农业科学,2013,41(06):139.
 Yang Chengjun,et al.Screening of birch family with salt tolerance under salt stress[J].Jiangsu Agricultural Sciences,2013,41(21):139.
[6]杨海涛.蕨菜中微量元素的测定[J].江苏农业科学,2013,41(10):272.
 Yang Haitao.Determination of trace elements in fiddlehead[J].Jiangsu Agricultural Sciences,2013,41(21):272.
[7]周玉波,吴毅斌,高晓忠.枇杷叶及其蜜炙品中金属元素含量的测定[J].江苏农业科学,2013,41(10):276.
 Zhou Yubo,et al.Determination of metallic elements content in loquat leaves and their honey refined products[J].Jiangsu Agricultural Sciences,2013,41(21):276.
[8]陈丽,曾艳霞,沙鸥,等.雪莲果中多种微量元素含量的测定[J].江苏农业科学,2013,41(11):326.
 Chen Li,et al.Simultaneous determination of trace elements contents in Smallanthus sonchifolius[J].Jiangsu Agricultural Sciences,2013,41(21):326.
[9]马猛,苏瑛,王昊,等.雷州黑鸭蛋品质研究[J].江苏农业科学,2014,42(02):159.
 Ma Meng,et al.Study on quality of Leizhou black duck eggs[J].Jiangsu Agricultural Sciences,2014,42(21):159.
[10]邓敏,梁光华,徐雷,等.促孕散治疗持久黄体不孕奶牛的血清微量元素与激素相关性分析[J].江苏农业科学,2014,42(02):173.
 Deng Min,et al.Correlation analysis of trace elements and hormones in serum of persistent corpus luteum dairy cattle treated by fertility-promoting powder[J].Jiangsu Agricultural Sciences,2014,42(21):173.

备注/Memo

备注/Memo:
收稿日期:2023-02-06
基金项目:国家“十三五”水体污染控制与治理科技重大专项(编号:2017ZX07101002)。
作者简介:白卓青(1997—),女,河北张家口人,硕士研究生,主要从事生态学研究。E-mail:120202209079@ncepu.edu.cn。
通信作者:张化永,博士,教授,主要从事生态工程学、恢复生态学等研究。E-mail:rceens@ncepu.edu.cn。
更新日期/Last Update: 2023-11-05