|本期目录/Table of Contents|

[1]甘志凯,陈玮,谌希.不同形态硅对砷胁迫下小麦光合生理、砷累积及相关基因表达的影响[J].江苏农业科学,2024,52(2):65-72.
 Gan Zhikai,et al.Impacts of different forms of silicon on photosynthetic physiology,arsenic accumulation and related gene expression in wheat under arsenic stress[J].Jiangsu Agricultural Sciences,2024,52(2):65-72.
点击复制

不同形态硅对砷胁迫下小麦光合生理、砷累积及相关基因表达的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第2期
页码:
65-72
栏目:
遗传育种与耕作栽培
出版日期:
2024-02-20

文章信息/Info

Title:
Impacts of different forms of silicon on photosynthetic physiology,arsenic accumulation and related gene expression in wheat under arsenic stress
作者:
甘志凯1陈玮2谌希1
1.南昌理工学院新能源与环境工程学院,江西南昌 330044; 2.南昌理工学院医学院,江西南昌 330044
Author(s):
Gan Zhikaiet al
关键词:
砷胁迫荧光特性亚细胞分布重金属调控基因
Keywords:
-
分类号:
S512.101
DOI:
-
文献标志码:
A
摘要:
采用盆栽土培试验,以无砷(As)胁迫处理(CK)为对照,设置30 mg/kg As胁迫处理(AS)及砷胁迫下施用纳米硅(NSi)、无机硅(ISi)、有机硅(OSi)与复合处理(NSi+ISi、NSi+OSi、ISi+OSi、NSi+ISi+OSi),探索不同形态硅对As胁迫下小麦光合生理、As亚细胞分布及相关调控基因表达的影响。结果表明,As胁迫下小麦光合生理受到显著影响、As含量增加,细胞生理受到显著影响。As胁迫下不同形态硅及其组合处理均提高了光合色素(叶绿素a、叶绿素b、类胡萝卜素)含量、改善了叶绿素荧光参数(Fv/FmΦPSⅡ、NPQ、qP),上调了相关重金属调控基因(TaPCS1、TaMT1、TaHMA3)的表达,且增加了细胞壁对As的劫持能力,并促进As在液泡区室化,整体而言以纳米硅组合处理(NSi+OSi、NSi+ISi+OSi)效果较佳。此外,As胁迫下,NSi+OSi、NSi+ISi+OSi处理植株Si含量显著增加,生物富集系数(BCF)、转移系数(TF)及As含量显著降低,均以NSi+OSi优于NSi+ISi+OSi处理。综上,30 mg/kg As胁迫下不同形态硅及其组合处理可保护光合色素降解、提高光合效率、诱导重金属调控基因表达,并通过促进As的区室化从而降低As累积对小麦的负面影响,以纳米硅与正硅酸乙酯组合施用(NSi+OSi)效果最佳,其BCF、TF分别降低653%~76.94%、5.02%~21.45%。
Abstract:
-

参考文献/References:

[1]Zhuang F,Huang J Y,Li H G,et al. Biogeochemical behavior and pollution control of arsenic in mining areas:a review[J]. Frontiers in Microbiology,2023,14:1043024.
[2]曾思燕,于昊辰,马静,等. 中国耕地表层土壤重金属污染状况评判及休耕空间权衡[J]. 土壤学报,2022,59(4):1036-1047.
[3]Tang Z,Zhao F J. The roles of membrane transporters in arsenic uptake,translocation and detoxification in plants[J]. Critical Reviews in Environmental Science and Technology,2021,51(21):2449-2484.
[4]和淑娟,王宏镔,王海娟,等. 砷胁迫下3-吲哚乙酸对不同砷富集能力植物根系形态和生理的影响[J]. 农业环境科学学报,2016,35(5):878-885.
[5]龚明贵,刘凯洋,魏亚楠,等. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报,2022,34(3):256-266.
[6]Cui J H,Jin Q A,Li F B,et al. Silicon reduces the uptake of cadmium in hydroponically grown rice seedlings:why nanoscale silica is more effective than silicate[J]. Environmental Science:Nano,2022,9(6):1961-1973.
[7]Kovács S,Kutasy E,Csajbók J.The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production[J]. Plants,2022,11(9):1223.
[8]李淑贤,刘卫国,高阳,等. 硅对人工阴蔽胁迫下大豆幼苗生长及光合特性的影响[J]. 中国农业科学,2018,51(19):3663-3672.
[9]Wu J W,Mock H P,Giehl R F H,et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants[J]. Journal of Hazardous Materials,2019,364:581-590.
[10]张明辉,时曼丽. 硒、硅对镉胁迫下小麦生长、生理特性及镉分布的影响[J]. 江苏农业科学,2022,50(17):66-73.
[11]白凤麟,樊雨荷,李琳. 硒、硅对盐胁迫下小麦光合生理及养分累积的影响[J]. 江苏农业科学,2023,51(3):68-75.
[12]史高玲,周东美,余向阳,等. 水稻和小麦累积镉和砷的机制与阻控对策[J]. 江苏农业学报,2021,37(5):1333-1343.
[13]Zhao F J,Tang Z,Song J J,et al. Toxic metals and metalloids:uptake,transport,detoxification,phytoremediation,and crop improvement for safer food[J]. Molecular Plant,2022,15(1):27-44.
[14]Lou L Q,Shi G L,Wu J H,et al. The influence of phosphorus on arsenic uptake/efflux and As toxicity to wheat roots in comparison with sulfur and silicon[J]. Journal of Plant Growth Regulation,2015,34(2):242-250.
[15]Shi G L,Liu H A,Zhou D M,et al. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science,2022,13:1032681.
[16]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[17]高战武,范春燕,鄢上钦,等. 盐碱胁迫下外源油菜素内酯与AM真菌对羊草光合特性及抗氧化酶系统的影响[J]. 山东农业科学,2022,54(5):44-52.
[18]吴敏兰,李荭荭,贾洋洋,等. 砷胁迫对不同烟草品种光合色素和叶绿素荧光特性的影响[J]. 生态毒理学报,2015,10(3):216-223.
[19]Li H H,Li Y T,Li X,et al. Low-arsenic accumulating cabbage possesses higher root activities against oxidative stress of arsenic[J]. Plants,2023,12(8):1699.
[20]Monayem H M,Amena K M,Najmul H M,et al. Silicon alleviates arsenic-induced toxicity in wheat through vacuolar sequestration and ROS scavenging[J]. International Journal of Phytoremediation,2018,20(8):796-804.
[21]Huang H L,Li M,Rizwan M,et al. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J]. Journal of Hazardous Materials,2021,401:123393.
[22]薛高峰,张贵龙,孙焱鑫,等. 喷施不同形态硅对温室番茄生长发育及品质的影响[J]. 中国农学通报,2012,28(16):272-276.
[23]张立,王杰. 不同硒形态对镉胁迫下油菜镉亚细胞分布、化学形态及硒累积的影响[J]. 江苏农业科学,2022,50(17):259-264.
[24]武坤,孔潇,董郁,等. 人工湿地植物对污水中重金属铬、镉、铅富集能力的整合分析[J]. 江苏农业学报,2022,38(6):1532-1540.
[25]Riaz M,Kamran M,Rizwan M,et al. Cadmium uptake and translocation:selenium and silicon roles in Cd detoxification for the production of low Cd crops:a critical review[J]. Chemosphere,2021,273:129690.
[26]Hou L,Ji S Z,Zhang Y,et al. The mechanism of silicon on alleviating cadmium toxicity in plants:a review[J]. Frontiers in Plant Science,2023,14:1141138.
[27]Ma J F,Shen R F,Shao J F. Transport of cadmium from soil to grain in cereal crops:a review[J]. Pedosphere,2021,31(1):3-10.
[28]Sheng H C,Chen S L. Plant silicon-cell wall complexes:identification,model of covalent bond formation and biofunction[J]. Plant Physiology and Biochemistry,2020,155:13-19.
[29]González-García Y,Cárdenas-lvarez C,Cadenas-Pliego G,et al. Effect of three nanoparticles (Se,Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress[J]. Plants,2021,10(2):217.

相似文献/References:

[1]华海霞.4种植物对硅的吸收动力学[J].江苏农业科学,2015,43(11):440.
 Hua Haixia.Absorption kinetics of four kinds of plants to silicon[J].Jiangsu Agricultural Sciences,2015,43(2):440.
[2]于涛,张海楼,隽英华,等.施肥模式对水稻稻瘟病抗性的影响[J].江苏农业科学,2014,42(07):113.
 Yu Tao,et al.Effect of fertilization modes on resistance to rice blast[J].Jiangsu Agricultural Sciences,2014,42(2):113.
[3]张敏,赵全利,王钊,等.外源硅和有机质对污染土壤中小麦砷、铅累积的影响[J].江苏农业科学,2017,45(24):285.
 Zhang Min,et al.Effects of silicon and organic matter on accumulation of arsenic and lead in wheat (Triticum aestivum L.) in contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(2):285.
[4]韩超,张浩,申海玉,等.外源硅对土壤镉活性及小麦吸收镉的影响[J].江苏农业科学,2018,46(15):38.
 Han Chao,et al.Influences of exogenous silicon on soil cadmium availability and cadmium uptake by wheat[J].Jiangsu Agricultural Sciences,2018,46(2):38.
[5]秦永梅,韩凤英,刘素慧,等.硅对沙培马铃薯生长发育、光合色素与光合特性的影响[J].江苏农业科学,2018,46(20):72.
 Qin Yongmei,et al.Effects of silicon on growth,photosynthetic pigment and photosynthetic characteristics of potato in sand culture[J].Jiangsu Agricultural Sciences,2018,46(2):72.
[6]徐宁,张方园,曹娜,等.硅叶面肥对夏玉米生长发育、产量和品质的影响[J].江苏农业科学,2019,47(14):74.
 Xu Ning,et al.Influences of silicon foliar fertilizer on growth,yield and quality of summer maize[J].Jiangsu Agricultural Sciences,2019,47(2):74.
[7]李爽.外源硅对干旱胁迫下大叶女贞光合作用及叶绿素荧光特性的影响[J].江苏农业科学,2019,47(22):174.
 Li Shuang.Effects of exogenous silicon on photosynthesis and fluorescence characteristics of Ligustrun lucidum under drought stress[J].Jiangsu Agricultural Sciences,2019,47(2):174.
[8]薛醒,赵潇彤,徐丽娜,等.镉胁迫下硅对玉米生长的缓解效应[J].江苏农业科学,2023,51(13):246.
 Xue Xing,et al.Alleviating effect of silicon on maize growth under cadmium stress[J].Jiangsu Agricultural Sciences,2023,51(2):246.
[9]苏瑞琴,张妍,崔同霞.砷胁迫下不同纳米颗粒对水稻养分吸收、生理特性及砷累积的影响[J].江苏农业科学,2023,51(17):67.
 Su Ruiqin,et al.Effects of different nanoparticles on nutrient absorption,physiological characteristics and arsenic accumulation of rice under arsenic stress[JY。]Su Ruiqin,et al(67)[J].Jiangsu Agricultural Sciences,2023,51(2):67.
[10]卢园,李瑞娟,赵娜,等.硅对镉胁迫下玉米生长和抗氧化防御系统的影响[J].江苏农业科学,2023,51(20):77.
 Lu Yuan,et al.Impacts of silicon on growth and antioxidant defense system of maize under cadmium stress[J].Jiangsu Agricultural Sciences,2023,51(2):77.
[11]李荟星.硅对砷胁迫下烟草叶绿素荧光特性的影响[J].江苏农业科学,2019,47(08):92.
 Li Huixing.Effects of silicon on chlorophyll fluorescence characteristics of tobacco under arsenic stress[J].Jiangsu Agricultural Sciences,2019,47(2):92.

备注/Memo

备注/Memo:
收稿日期:2023-06-09
基金项目:江西省教育厅科学技术研究项目(编号:GJJ160387)。
作者简介:甘志凯(1984—),男,江西樟树人,讲师,从事植物生物学研究。E-mail:bjyangll@163.com。
更新日期/Last Update: 2024-01-20