|本期目录/Table of Contents|

[1]郭绍雷,许建兰,张斌斌,等.基于广泛靶向代谢组的桃果实衰老软化过程差异代谢物筛选与鉴定[J].江苏农业科学,2024,52(6):198-205.
 Guo Shaolei,et al.Screening and identification of several metabolites associated with softening and senescence in peach fruit based on widely targeted metabolomics[J].Jiangsu Agricultural Sciences,2024,52(6):198-205.
点击复制

基于广泛靶向代谢组的桃果实衰老软化过程差异代谢物筛选与鉴定(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第6期
页码:
198-205
栏目:
贮藏加工与检测分析
出版日期:
2024-03-20

文章信息/Info

Title:
Screening and identification of several metabolites associated with softening and senescence in peach fruit based on widely targeted metabolomics
作者:
郭绍雷许建兰张斌斌张妤艳沈志军马瑞娟俞明亮
江苏省农业科学院果树研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京 210014
Author(s):
Guo Shaoleiet al
关键词:
桃果实衰老软化代谢组差异代谢物
Keywords:
-
分类号:
S662.101
DOI:
-
文献标志码:
A
摘要:
筛选与鉴定参与调控桃果实采后贮藏过程衰老软化相关代谢物质,以深入了解桃果实采后衰老软化相关生理生化机制。常温贮藏条件下,萘乙酸处理可加速霞晖8号七成熟桃果实衰老软化,采用超高液相色谱串联质谱技术,检测桃果实贮藏0、3、6 d代谢物质的变化,选取差异倍数值(≥2或≤0.5),采用正交偏最小二乘判别分析模型所获得的变量重要性投影值(≥1)的代谢物为差异代谢物。结果表明,在霞晖8号桃果实5组样品中共检测到816种代谢物,可被分为11类,其中检测到酚酸类物质160种,占比最高。通过比较在各分组中代谢物定量信息的差异倍数变化前10的代谢物,结合KEGG信号通路的差异代谢物聚类分析,筛选并鉴定到可能参与桃果实软化的各种代谢物29种,其中脂质与酚酸类物质鉴定到最多,各有7种。
Abstract:
-

参考文献/References:

[1]Yoshioka H,Hayama H,Tatsuki M,et al. Cell wall modification during development of mealy texture in the stony-hard peach “Odoroki” treated with propylene[J]. Postharvest Biology and Technology,2010,55(1):1-7.
[2]Brummell D A,Dal Cin V,Crisosto C H,et al. Cell wall metabolism during maturation,ripening and senescence of peach fruit[J]. Journal of Experimental Botany,2004,55(405):2029-2039.
[3]Hayama H,Shimada T,Fujii H,et al. Ethylene-regulation of fruit softening and softening-related genes in peach[J]. Journal of Experimental Botany,2006,57(15):4071-4077.
[4]Tucker G,Yin X R,Zhang A D,et al. Ethyleneand fruit softening[J]. Food Quality and Safety,2017,1(4):253-267.
[5]Zhang Z Y,Wang N,Jiang S H,et al. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening[J]. Journal of Agricultural and Food Chemistry,2017,65(2):429-434.
[6]Iqbal N,Khan N A,Ferrante A,et al. Ethylene role in plant growth,development and senescence:interaction with other phytohormones[J]. Frontiers in Plant Science,2017,8:475.
[7]阚娟,刘俊,金昌海. 桃果实成熟软化与细胞壁降解相关糖苷酶及乙烯生物合成的关系[J]. 中国农业科学,2012,45(14):2931-2938.
[8]徐小迪,李博强,秦国政,等. 果实采后品质维持的分子基础与调控技术研究进展[J]. 园艺学报,2020,47(8):1595-1609.
[9]Xu H Y,Chen Y Y,Wang L B,et al. Transcriptome analysis reveals a regulation of ethylene-induced post-harvest senescence in pear fruit[J]. Scientia Horticulturae,2018,240:585-591.
[10]Qian M,Zhang Y K,Yan X Y,et al. Identification and expression analysis of polygalacturonase family members during peach fruit softening[J]. International Journal of Molecular Sciences,2016,17(11):1933.
[11]Wang X B,Zeng W F,Ding Y F,et al. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening[J]. Plant Science,2019,283:116-126.
[12]Smith D L,Abbott J A,Gross K C. Down-regulation of tomato beta-galactosidase 4 results in decreased fruit softening[J]. Plant Physiology,2002,129(4):1755-1762.
[13]Guo S L,Song J,Zhang B B,et al. Genome-wide identification and expression analysis of beta-galactosidase family members during fruit softening of peach[Prunus persica (L.) Batsch][J]. Postharvest Biology and Technology,2018,136:111-123.
[14]Liu H K,Qian M,Song C H,et al. Down-regulation of PpBGAL10 and PpBGAL16 delays fruit softening in peach by reducing polygalacturonase and pectin methylesterase activity[J]. Frontiers in Plant Science,2018,9:1015.
[15]Gu C,Guo Z H,Cheng H Y,et al. A HD-ZIP Ⅱ HOMEBOX transcription factor,PpHB.G7,mediates ethylene biosynthesis during fruit ripening in peach[J]. Plant Science,2019,278:12-19.
[16]Tadiello A,Ziosi V,Negri A S,et al. On the role of ethylene,auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening[J]. BMC Plant Biology,2016,16:44.
[17]Wang X B,Pan L,Wang Y,et al. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals[J]. Plant Science,2021,313:111084.
[18]Chen X M,Liu Y D,Zhang X,et al. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach[J]. Horticulture Research,2023,10(9):uhad158.
[19]Sawada Y,Akiyama K,Sakata A,et al. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants[J]. Plant & Cell Physiology,2009,50(1):37-47.
[20]Chen W,Gong L,Guo Z L,et al. A novel integrated method for large-scale detection,identification,and quantification of widely targeted metabolites:application in the study of rice metabolomics[J]. Molecular Plant,2013,6(6):1769-1780.
[21]闫乐乐,卜璐璐,牛良,等. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学,2022,55(6):1149-1158.
[22]刘苏宁,王力荣,方伟超,等. 基于广泛靶向代谢组学的桃芽抗寒代谢物的筛选与鉴定[J]. 果树学报,2023,40(1):1-12.
[23]生弘杰,卢素文,郑暄昂,等. 基于广泛靶向代谢组学的葡萄种子代谢物鉴定与比较分析[J]. 中国农业科学,2023,56(7):1359-1376.
[24]石飞,邢玉青,李志刚,等. 基于广泛靶向代谢组学的冷藏冬枣成分分析[J]. 中国食品学报,2023,23(4):324-333.
[25]Fan F Y,Huang C S,Tong Y L,et al. Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes[J]. Food Chemistry,2021,362:130257.
[26]Tatsuki M,Nakajima N,Fujii H,et al. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L.Batsch)[J]. Journal of Experimental Botany,2013,64(4):1049-1059.
[27]Fraga C G,Clowers B H,Moore R J,et al. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry,XCMS,and chemometrics[J]. Analytical Chemistry,2010,82(10):4165-4173.
[28]Thévenot E A,Roux A,Xu Y,et al. Analysis of the human adult urinary metabolome variations with age,body mass index,and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research,2015,14(8):3322-3335.
[29]Ogata H,Goto S,Sato K,et al. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research,1999,27(1):29-34.
[30]蔡志翔,严娟,宿子文,等. 不同类型桃种质资源主要酚类物质含量评价[J]. 园艺学报,2022,49(5):1008-1022.
[31]Liu H,Jiang W B,Cao J K,et al. Evaluation of antioxidant properties of extractable and nonextractable polyphenols in peel and flesh tissue of different peach varieties[J]. Journal of Food Processing and Preservation,2018,42(6):e13624.
[32]卢娟芳,刘盛雨,芦旺,等. 不同类型桃果肉酚类物质及抗氧化活性分析[J]. 中国农业科学,2017,50(16):3205-3214.
[33]朱辰晖,吴昊,施文卫,等. 对羟基肉桂酸(P-CA)处理对桃果实采后保鲜效果研究[J]. 食品科技,2022,47(5):62-68.
[34]Xi W P,Zhang Y M,Sun Y J,et al. Phenolic composition of Chinese wild mandarin (Citrus reticulata Balnco.) pulps and their antioxidant properties[J]. Industrial Crops and Products,2014,52:466-474.
[35]Pan L,Zeng W F,Niu L,et al. PpYUC11,a strong candidate gene for the stony hard phenotype in peach (Prunus persica L.Batsch),participates in IAA biosynthesis during fruit ripening[J]. Journal of Experimental Botany,2015,66(22):7031-7044.
[36]汪开拓,雷长毅,韦盼盼,等. 亚精胺处理对桃果实贮藏品质及内源乙烯和多胺代谢的影响[J]. 食品与发酵工业,2020,46(10):92-99,117.
[37]张海燕,饶景萍,戴斯琴,等. 外源腐胺对油桃采后生理及与其相关酶活性的影响[J]. 植物生理学通讯,2007,43(6):1061-1064.
[38]曹永庆,冷平,潘烜,等. 脱落酸在桃果实成熟过程中的作用[J]. 园艺学报,2009,36(7):1037-1042.
[39]Wang X B,Zeng W F,Ding Y F,et al. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach[J]. Horticulture Research,2019,6:19.

相似文献/References:

[1]黎春红,周宏胜,张雷刚,等.适于桃果实货架保鲜的不同包装材料的筛选[J].江苏农业科学,2018,46(20):215.
 Li Chunhong,et al.Screening of packaging materials suitable for preservation of peach fruits during shelf-life[J].Jiangsu Agricultural Sciences,2018,46(6):215.
[2]邓红军,刘芳,杨明飞,等.采后桃果实耐冷性机理研究进展[J].江苏农业科学,2022,50(16):6.
 Deng Hongjun,et al.Research progress on cold tolerance mechanism of postharvest peach fruit[J].Jiangsu Agricultural Sciences,2022,50(6):6.

备注/Memo

备注/Memo:
收稿日期:2023-10-23
基金项目:现代农业产业技术体系建设专项(编号:CARS-30);江苏省种业振兴“揭榜挂帅”项目(编号:JBGS[2021]082)。
作者简介:郭绍雷(1988—),男,山东郯城人,博士,助理研究员,主要从事桃种质资源与新品种选育工作。E-mail:guoshaolei0305@126.com。
通信作者:俞明亮,博士,研究员,主要从事桃种质资源与新品种选育工作。E-mail:mly@jaas.ac.cn。
更新日期/Last Update: 2024-03-20