|本期目录/Table of Contents|

[1]孙明慧,刘丹丹,吴琼,等.茶树BURP基因家族全基因组鉴定与表达分析[J].江苏农业科学,2025,53(4):242-253.
 Sun Minghui,et al.Whole-genome identification and expression analysis of BURP gene family in tea plants[J].Jiangsu Agricultural Sciences,2025,53(4):242-253.
点击复制

茶树BURP基因家族全基因组鉴定与表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第4期
页码:
242-253
栏目:
多抗性基因
出版日期:
2025-02-20

文章信息/Info

Title:
Whole-genome identification and expression analysis of BURP gene family in tea plants
作者:
孙明慧刘丹丹吴琼焦小雨王文杰
安徽省农业科学院茶叶研究所,安徽合肥 230001
Author(s):
Sun Minghuiet al
关键词:
BURP基因家族茶树基因表达非生物胁迫全基因组鉴定
Keywords:
-
分类号:
S188;S571.101
DOI:
-
文献标志码:
A
摘要:
茶[Camellia sinensis(L.) Kuntze]因其极高的营养价值和经济重要性而在全球范围内种植。为了研究茶树中BURP的作用,基于茶树全基因组对茶树中BURP基因家族进行筛选和鉴定。通过TBtools查找筛选包含有PF03181结构域的序列,使用生物信息学对其编码的蛋白质进行染色体定位、系统进化关系、蛋白质理化性质和共线性关系等分析。基于转录组数据挑选对胁迫响应较强烈的基因4个,即CsBURP14、CsBURP7、CsBURP10和CsBURP15,利用实时荧光定量聚合酶链式反应(real-time fluorescent quantitative PCR,qPCR)方法检测其在冷、盐和干旱胁迫下的表达情况。利用茶树基因组数据鉴定出17个BURP基因,聚类为3个亚组,其中PG1β-like包含5条,BNM2-like包含8条,RD22-like包含4条。结构域预测发现只有11条基因包含完整的BURP结构域,6条序列只包含其中的1或2个motif,而CsBURP1不包含这3个motif。CsBURP14、CsBURP7、CsBURP10和CsBURP15均响应干旱胁迫、冷胁迫和盐胁迫。CsBURP7响应最剧烈,在低温处理下为负调控,保持在初始表达量的1/3左右,干旱处理则为正调控,12 h时为初始值的6倍。CsBURP家族对低温胁迫、盐胁迫和干旱胁迫均有响应,推测其在茶树抗逆中发挥重要作用。
Abstract:
-

参考文献/References:

[1]Boutilier K A,Ginés M J,DeMoor J M,et al. Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis[J]. Plant Molecular Biology,1994,26(6):1711-1723.
[2]Bassüner R,Bumlein H,Huth A,et al. Abundant embryonic mRNA in field bean (Vicia faba L.) codes for a new class of seed proteins:cDNA cloning and characterization of the primary translation product[J]. Plant Molecular Biology,1988,11(3):321-334.
[3]Yamaguchi-Shinozaki K,Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress[J]. Plant Cell,1994,6(2):251-264.
[4]Zheng L,Heupel R C,DellaPenna D. The beta-subunit of tomato fruit polygalacturonase isoenzyme 1:isolation,characterization,and identification of unique structural features[J]. The Plant Cell,1992,4(9):1147-1156.
[5]Ding X P,Hou X,Xie K B,et al. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses[J]. Planta,2009,230(1):149-163.
[6]Gan D F,Jiang H Y,Zhang J,et al. Genome-wide analysis of BURP domain-containing genes in maize and sorghum[J]. Molecular Biology Reports,2011,38(7):4553-4563.
[7]Hattori J,Boutilier K A,van Lookeren Campagne M M,et al. A conserved BURP domain defines a novel group of plant proteins with unusual primary structures[J]. Molecular and General Genetics,1998,259(4):424-428.
[8]饶俊,郑新欣,胡英考. BURP蛋白家族研究进展[J]. 生物技术通报,2009,25(7):8-11.
[9]Irkitbay А,Madenova A K,Sapakhova Z B. The role of salicylic acid in the plant defense mechanism[J]. BULLETIN of the L.N. Gumilyov Eurasian National University(Bioscience Series),2022,140(3),83-96.
[10]Xu B,Gou J Y,Li F G,et al. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production[J]. Molecular Plant,2013,6(3):945-958.
[11]Wang W Z,Zhang Z,Li X G. Identification and expression analysis of BURP domain-containing genes in jujube and their involvement in low temperature and drought response[J]. BMC Genomics,2022,23(1):692.
[12]Fu L F,Zhang Z J,Wang H,et al. Genome-wide analysis of BURP genes and identification of a BURP-V gene RcBURP4 in Rosa chinensis[J]. Plant Cell Reports,2022,41(2):395-413.
[13]Xu Y,Hu D,Hou X,et al. OsTMF attenuates cold tolerance by affecting cell wall properties in rice[J]. New Phytologist,2020,227(2):498-512.
[14]Liu H H,Ma Y,Chen N,et al. Overexpression of stress-inducible OsBURP16,the beta subunit of polygalacturonase 1,decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice[J]. Plant Cell Environment,2014,37(5):1144-1158.
[15]Park J,Cui Y,Kang B H. AtPGL3 is an Arabidopsis BURP domain protein that is ocalized to the cell wall and promotes cell enlargement[J]. Frontiers in Plant Science,2015,6:412-512.
[16]Ashraf F,Khan A A,Iqbal N,et al. In silico analysis and expression profiling of Expansin A4,BURP domain protein RD22-like and E6-like genes associated with fiber quality in cotton[J]. Molecular Biology Reports,2022,49(6):5521-5534.
[17]章燕如,俞可可,龚秀,等. 青花菜BoBURP1基因的克隆与表达分析[J]. 浙江农业学报,2016,28(9):1501-1507.
[18]王闻竹. 枣幼苗对冷-复温响应的转录及BURP基因分析[D]. 杨凌:西北农林科技大学,2023:7-11.
[19]Chitkara P,Poddar N,Singh A,et al. BURP domain-containing genes in legumes:genome-wide identification,structure,and expression analysis under stresses and development[J]. Plant Biotechnology Reports,2022,16(4):369-388.
[20]Ren J X,Feng L,Guo L L,et al. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica[J]. Physiology and Molecular Biology of Plants,2023,29(11):1717-1731.
[21]Shao Y H,Wei G,Wang L,et al. Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa[J]. Journal of Integrative Plant Biology,2011,53(9):743-755.
[22]Sun H R,Wei H L,Wang H T,et al. Genome-wide identification and expression analysis of the BURP domain-containing genes in Gossypium hirsutum[J]. BMC Genomics,2019,20(1):558-576.
[23]Li Y,Chen X,Chen Z,et al. Identification and expression analysis of BURP domain-containing genes in Medicago truncatula[J]. Frontiers in Plant Science,2016,7:485-500.
[24]Ram S K,Tripathi S,Hembram M,et al. Network interactions with functional roles and evolutionary relationships for BURP domain-containing proteins in chickpea and model species[J]. Bioinformation,2023,19(12):1197-1211.
[25]Wang H M,Zhou L,Fu Y P,et al. Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress[J]. Plant Cell Environ,2012,35(11):1932-1947.
[26]蒋明,叶子弘,李金枝,等. 二穗短柄草BURP家族基因的鉴定与分析[J]. 麦类作物学报,2015,35(9):1208-1214.
[27]Wu Q,Tong W,Zhao H J,et al. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants[J]. The Plant Journal,2022,111(2):406-421.
[28]Xia E H,Zhang H B,Sheng J,et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant,2017,10(6):866-877.
[29]Li Y Y,Wang X W,Ban Q Y,et al. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis[J]. BMC Genomics,2019,20(1):624-640.
[30]Zhang Q,Cai M C,Yu X M,et al. Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress[J]. Tree Genetics & Genomes,2017,13(4):78-94.

相似文献/References:

[1]李金,魏艳丽,庞磊,等.茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J].江苏农业科学,2013,41(10):21.
 Li Jin,et al.Differences in expression of TCS1、TIDH and SAMS genes in caffeine synthetic route of Camellia Sinensis and their correlation with caffeine contents[J].Jiangsu Agricultural Sciences,2013,41(4):21.
[2]朱韦京,余树全,汪赛,等.不同酸雨作用方式对茶树幼苗生长与光合特征参数的影响[J].江苏农业科学,2014,42(10):232.
 Zhu Weijing,et al.Effects of different acid rain action modes on growth and photosynthetic parameters of Camellia sinensis seedlings[J].Jiangsu Agricultural Sciences,2014,42(4):232.
[3]李荣林,李珍珍,杨亦扬,等.以诱导抗性为基础的茶树病虫害控制新技术[J].江苏农业科学,2013,41(11):145.
 Li Ronglin,et al.New diseases and insect pests control techniques for tea tree based on induced resistance[J].Jiangsu Agricultural Sciences,2013,41(4):145.
[4]王雪萍,龚自明,高士伟,等.ABT1号生根粉对茶树穴盘扦插生根的影响[J].江苏农业科学,2013,41(11):277.
 Wang Xueping,et al.Effect of rooting powder ABT1 on rooting of tea tree plug seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):277.
[5]周萌,李友勇,孙雪梅,等.基于EST-SSR标记的云南野生茶树遗传多样性分析[J].江苏农业科学,2013,41(12):22.
 Zhou Meng,et al.Genetic diversity analysis of wild tea trees in Yunnan Province based on EST-SSR markers[J].Jiangsu Agricultural Sciences,2013,41(4):22.
[6]杨亦扬,胡雲飞,李荣林,等.不同茶树品种的碧螺春茶适制性[J].江苏农业科学,2015,43(09):219.
 Yang Yiyang,et al.Study on processing suitability of Biluochun tea from different tea plant varieties[J].Jiangsu Agricultural Sciences,2015,43(4):219.
[7]胡雲飞,杨亦扬,李荣林,等.不同时段喷施叶面肥对春茶新梢生长与品质的影响[J].江苏农业科学,2015,43(07):170.
 Hu Yunfei,et al.Effects of sparying foliage fertilizer at different times on growth and quality of fresh tea new shoots[J].Jiangsu Agricultural Sciences,2015,43(4):170.
[8]李荣林,杨亦扬,胡雲飞,等.茶树的抗虫性和抗性育种研究[J].江苏农业科学,2015,43(05):1.
 Li Rongling,et al.Study on insect resistance and stress-resistance breeding of tea plant[J].Jiangsu Agricultural Sciences,2015,43(4):1.
[9]王海斌,叶江华,孔祥海,等.铜胁迫下不同茶树的生理响应及亚细胞水平铜分布特性[J].江苏农业科学,2016,44(11):219.
 Wang Haibin,et al.Physiological response and copper distribution characteristics in subcellular level of different tea tree under copper stress[J].Jiangsu Agricultural Sciences,2016,44(4):219.
[10]田甜,韦锦坚,陈远权,等.茶树的铝、硒、钙营养及互作研究综述[J].江苏农业科学,2016,44(12):29.
 Tian Tian,et al.On nutrition and interaction of aluminum, selenium and calcium in tea plant:a review[J].Jiangsu Agricultural Sciences,2016,44(4):29.

备注/Memo

备注/Memo:
收稿日期:2024-10-29
基金项目:国家自然科学基金联合基金(编号:U23A20213);安徽省茶叶产业技术体系项目(编号:AHCYJSTX-11);安徽省农业科学院成果转化项目(编号:2024YL041)。
作者简介:孙明慧(1994—),女,河南睢县人,硕士,助理研究员,主要从事茶树种质资源与遗传育种研究。E-mail:sunminghui@aaas.org.cn。
通信作者:王文杰,研究员,主要从事茶树新品种选育、茶叶加工与品质研究。E-mail:391590137@qq.com。
更新日期/Last Update: 2025-02-20