|本期目录/Table of Contents|

[1]姜鹏,高进,邓晔,等.智能化技术在无人化农场中的应用研究与展望[J].江苏农业科学,2025,53(5):31-39.
 Jiang Peng,et al.Application research and prospect of intelligent technology in unmanned farm[J].Jiangsu Agricultural Sciences,2025,53(5):31-39.
点击复制

智能化技术在无人化农场中的应用研究与展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第5期
页码:
31-39
栏目:
专论与综述
出版日期:
2025-03-05

文章信息/Info

Title:
Application research and prospect of intelligent technology in unmanned farm
作者:
姜鹏高进邓晔施洋孙艳茹周小四陆镇威孙健雄杨华王为
江苏沿海地区农业科学研究所,江苏盐城 224000
Author(s):
Jiang Penget al
关键词:
智慧农业环境感知人工智能农业机械无人化农场
Keywords:
-
分类号:
S126
DOI:
-
文献标志码:
A
摘要:
智慧农业是现代农业的发展方向,通过信息技术与农业的深度融合,实现土壤-作物-机器-环境传感器协调下的智能决策与精准协调作业,最终使农业生产由机械化向智能化方向发展。从农业智能化关键技术以及自主无人系统与无人农场2个方面的研究现状进行综述,着重阐述现代科学技术对农业生产的应用研究。(1)农业传感器是感知层面的核心技术之一,结合传感器技术,从环境信息感知、作物生理生长状况感知、作物表型参数检测等对农情信息感知技术进行归纳总结;农业人工智能技术基于农业大数据的获取,从机器学习的角度概述典型的算法模型,并对农业数据信息转化为农业推断决策技术进行归纳总结;无人农机装备执行农业生产活动的决策指令,分别从自主导航与自主避障、路径追踪与路径规划等方面对智能农机装备进行归纳总结。(2)针对未来“谁来种地”和“如何种地”等问题,从“耕种管收”4个方面阐述农机装备精准化作业与多机协同管理技术。并对智能化关键技术的发展趋势进行总结与展望,以期推动该技术在农业领域中的应用,进而促进现代化农业的转型升级。
Abstract:
-

参考文献/References:

[1]Ju C,Kim J,Seol J,et al. A review on multirobot systems in agriculture[J]. Computers and Electronics in Agriculture,2022,202:107336.
[2]赵春江,李瑾,冯献. 面向2035年智慧农业发展战略研究[J]. 中国工程科学,2021,23(4):1-9.
[3]赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业,2019,1(1):1-7.
[4]兰玉彬,赵德楠,张彦斐,等. 生态无人农场模式探索及发展展望[J]. 农业工程学报,2021,37(9):312-327.
[5]李道亮,李震. 无人农场系统分析与发展展望[J]. 农业机械学报,2020,51(7):1-12.
[6]何东健,杨成海,杨青,等. 面向精准农业的农田土壤成分实时测定研究进展[J]. 农业工程学报,2012,28(7):78-85.
[7]Christy C D. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy[J]. Computers and Electronics in Agriculture,2008,61(1):10-19.
[8]Wan M D,Yan T Y,Xu G X,et al. MAE-NIR:a masked autoencoder that enhances near-infrared spectral data to predict soil properties[J]. Computers and Electronics in Agriculture,2023,215:108427.
[9]韩冷,何雄奎,王昌陵,等. 智慧果园构建关键技术装备及展望[J]. 智慧农业(中英文),2022,4(3):1-11.
[10]杜兆辉,和贤桃,杨丽,等. 玉米精准变量播种技术与装备研究进展[J]. 农业工程学报,2023,39(9):1-16.
[11]渠纯纯,孙文秀,李臻,等. 植物柔性传感器研究进展与展望[J]. 农业工程学报,2023,39(8):32-43.
[12]Diacci C,Lee J W,Janson P,et al. Real-time monitoring of glucose export from isolated chloroplasts using an organic electrochemical transistor[J]. Advanced Materials Technologies,2020,5(3):1900262.
[13]Sneha M,Ravindranath N A,Murugesan N,et al. A biosensor for monitoring of salt stress in plants[J]. Organic Electronics,2023,113:106698.
[14]Diacci C,Abedi T,Lee J W,et al. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors[J]. iScience,2020,24(1):101966.
[15]Church J,Armas S M,Patel P K,et al. Development and characterization of needle-type ion-selective microsensors for in situ determination of foliar uptake of Zn2+ in Citrus plants[J]. Electroanalysis,2018,30(4):626-632.
[16]Ochiai T,Tago S,Hayashi M,et al. Highly sensitive measurement of bio-electric potentials by boron-doped diamond (BDD) electrodes for plant monitoring[J]. Sensors,2015,15(10):26921-26928.
[17]Lee G,Hossain O,Jamalzadegan S,et al. Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring[J]. Science Advances,2023,9(15):eade2232.
[18]Chai Y F,Chen C Y,Luo X,et al. Cohabiting plant-wearable sensor in situ monitors water transport in plant[J]. Advanced Science,2021,8(10):2003642.
[19]Tang W,Yan T,Wang F,et al. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth[J]. Carbon,2019,147:295-302.
[20]Im H,Lee S,Naqi M,et al. Flexible PI-based plant drought stress sensor for real-time monitoring system in smart farm[J]. Electronics,2018,7(7):114.
[21]Herwitz S R,Johnson L F,Dunagan S E,et al. Imaging from an unmanned aerial vehicle:agricultural surveillance and decision support[J]. Computers and Electronics in Agriculture,2004,44(1):49-61.
[22]Shu M Y,Fei S P,Zhang B Y,et al. Application of UAV multisensor data and ensemble approach for high-throughput estimation of maize phenotyping traits[J]. Plant Phenomics,2022(1):206-222.
[23]Hu X,Gu X,Sun Q,et al. Comparison of the performance of multi-source three-dimensional structural data in the application of monitoring maize lodging[J]. Computers and Electronics in Agriculture,2023,208:107782.
[24]Shu M Y,Dong Q Z,Fei S P,et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images[J]. Computers and Electronics in Agriculture,2022,197:106982.
[25]Zhang Z Z,Kayacan E,Thompson B,et al. High precision control and deep learning-based corn stand counting algorithms for agricultural robot[J]. Autonomous Robots,2023(7):1289-1302.
[26]Fan Z Q,Sun N,Qiu Q,et al. In situ measuring stem diameters of maize crops with a high-throughput phenotyping robot[J]. Remote Sensing,2022,14(4):1030.
[27]张凝,杨贵军,赵春江,等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报,2021,25(1):403-422.
[28]刘现,郑回勇,施能强,等. 人工智能在农业生产中的应用进展[J]. 福建农业学报,2013,28(6):609-614.
[29]赵春江. 农业知识智能服务技术综述[J]. 智慧农业(中英文),2023,5(2):126-148.
[30]赵立新,邢润哲,白银光,等. 深度学习在目标检测的研究综述[J]. 科学技术与工程,2021,21(30):12787-12795.
[31]Madec S,Jin X,Lu H,et al. Ear density estimation from high resolution RGB imagery using deep learning technique[J]. Agricultural and Forest Meteorology,2019,264:225-234.
[32]Yang M D,Tseng H H,Hsu Y C,et al. Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images[J]. Remote Sensing,2020,12(4):633.
[33]Gong X L,Zhang S J.A high-precision detection method of apple leaf diseases using improved faster R-CNN[J]. Agriculture,2023,13(2):240.
[34]章永龙,解亚玲,徐向英,等. 基于改进Mask R-CNN的黄瓜叶面积测量模型[J]. 农业工程学报,2023,39(17):182-189.
[35]尹川,苏议辉,潘勉,等. 基于改进YOLO v5s的名优绿茶品质检测[J]. 农业工程学报,2023,39(8):179-187.
[36]Qing J J,Deng X L,Lan Y B,et al. GPT-aided diagnosis on agricultural image based on a new light YOLOPC[J]. Computers and Electronics in Agriculture,2023,213:108168.
[37]赵兴,岳喜申,邬欢欢. 基于改进YOLO v5的苹果叶部病害检测[J]. 江苏农业科学,2024,52(8):183-192.
[38]翟长远,杨硕,王秀,等. 农机装备智能测控技术研究现状与展望[J]. 农业机械学报,2022,53(4):1-20.
[39]赵岩,陈学庚,温浩军.新疆兵团精准农业发展与北斗卫星导航技术的应用[J]. 石河子大学学报(自然科学版),2018,36(4):397-404.
[40]Ortiz B V,Balkcom K B,Duzy L,et al. Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations[J]. Precision Agriculture,2013,14(4):357-375.
[41]钟银,薛梦琦,袁洪良. 智能农机GNSS/INS组合导航系统设计[J]. 农业工程学报,2021,37(9):40-46.
[42]胡炼,王志敏,汪沛,等. 基于激光感知的农业机器人定位系统[J]. 农业工程学报,2023,39(5):1-7.
[43]张智刚,王明昌,毛振强,等. 基于星基增强精密单点定位的农机自动导航系统开发与测试[J]. 华南农业大学学报,2021,42(6):109-116.
[44]万欢,欧媛珍,管宪鲁,等. 无人农机作业环境感知技术综述[J]. 农业工程学报,2024,40(8):1-18.
[45]孟志军,王昊,付卫强,等. 农业装备自动驾驶技术研究现状与展望[J]. 农业机械学报,2023,54(10):1-24.
[46]陈斌,张漫,徐弘祯,等. 基于改进YOLO v3-tiny的全景图像农田障碍物检测[J]. 农业机械学报,2021,52(增刊1):58-65.
[47]李文涛,张岩,莫锦秋,等. 基于改进YOLO v3-tiny的田间行人与农机障碍物检测[J]. 农业机械学报,2020,51(增刊1):1-8,33.
[48]史扬杰,程馨慧,奚小波,等. 农业机械导航路径跟踪控制方法研究进展[J]. 农业工程学报,2023,39(15):1-14.
[49]Xue J,Lei Z,Grift T E. Variable field-of-view machine vision based row guidance of an agricultural robot[J]. Computers and Electronics in Agriculture,2012,84:85-91.
[50]张朝宇,卢邦,李强,等. 油菜无人播种作业两退三切鱼尾自动调头方法[J]. 农业机械学报,2022,53(10):66-75.
[51]迟瑞娟,熊泽鑫,姜龙腾,等. 基于模型预测的插秧机路径跟踪控制算法[J]. 农业机械学报,2022,53(11):22-30,99.
[52]刘国海,李持衡,沈跃,等. 基于滑模自抗扰的同步转向高地隙喷雾机姿态控制[J]. 农业机械学报,2023,54(3):180-189,300.
[53]Zhou X Z,Zou X J,Tang W,et al. Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm[J]. Frontiers in Plant Science,2023,14:1103276.
[54]王宁,韩雨晓,王雅萱,等. 农业机器人全覆盖作业规划研究进展[J]. 农业机械学报,2022,53(增刊1):1-19.
[55]翟卫欣,王东旭,陈智博,等. 无人驾驶农机自主作业路径规划方法[J]. 农业工程学报,2021,37(16):1-7.
[56]陈凯,解印山,李彦明,等. 多约束情形下的农机全覆盖路径规划方法[J]. 农业机械学报,2022,53(5):17-26,43.
[57]崔永杰,王寅初,何智,等. 基于改进RRT算法的猕猴桃采摘机器人全局路径规划[J]. 农业机械学报,2022,53(6):151-158.
[58]罗承铭,熊陈文,黄小毛,等. 四边形田块下油菜联合收获机全覆盖作业路径规划算法[J]. 农业工程学报,2021,37(9):140-148.
[59]罗锡文,胡炼,何杰,等. 中国大田无人农场关键技术研究与建设实践[J]. 农业工程学报,2024,40(1):1-16.
[60]Du Z H,Yang L,Zhang D X,et al. Corn variable-rate seeding decision based on gradient boosting decision tree model[J]. Computers and Electronics in Agriculture,2022,198:107025.
[61]Munnaf M A,Mouazen A M. An automated system of soil sensor-based site-specific seeding for silage maize:a proof of concept[J]. Computers and Electronics in Agriculture,2023,209:107872.
[62]Wang N,Yang X,Wang T,et al. Collaborative path planning and task allocation for multiple agricultural machines[J]. Computers and Electronics in Agriculture,2023,213:108218.
[63]华明圆,宋健,王晓平,等. 农机装备物联网技术研究现状与展望[J]. 江苏农业科学,2024,52(1):17-27.
[64]白晓平,王卓,胡静涛,等. 基于领航-跟随结构的联合收获机群协同导航控制方法[J]. 农业机械学报,2017,48(7):14-21.
[65]Ding F,Zhang W Y,Luo X W,et al. Gain self-adjusting single neuron PID control method and experiments for longitudinal relative position of harvester and transport vehicle[J]. Computers and Electronics in Agriculture,2023,213:108215.
[66]张闻宇,张智刚,罗锡文,等. 收获机与运粮车纵向相对位置位速耦合协同控制方法与试验[J]. 农业工程学报,2021,37(9):1-11.
[67]曹如月,李世超,季宇寒,等. 基于蚁群算法的多机协同作业任务规划[J]. 农业机械学报,2019,50(增刊1):34-39.
[68]张帆,罗锡文,张智刚,等. 基于改进多父辈遗传算法的农机调度优化方法[J]. 农业工程学报,2021,37(9):192-198.
[69]王猛. 农机多机协同作业任务分配关键技术研究[D]. 北京:中国农业机械化科学研究院,2021.

相似文献/References:

[1]阴国富.基于光载无线交换技术的渭南智慧农业系统研究[J].江苏农业科学,2014,42(08):414.
 Yin Guofu.Study on wisdom agriculture system in Weinan City,Shaanxi Province based on radio-over-fiber exchange technology[J].Jiangsu Agricultural Sciences,2014,42(5):414.
[2]杨大蓉.中国智慧农业产业发展策略[J].江苏农业科学,2014,42(04):1.
 Yang Darong.Development strategies for Chinas wisdom agricultural industry[J].Jiangsu Agricultural Sciences,2014,42(5):1.
[3]张文宇,曹宏鑫,葛道阔,等.基于模型的智慧农业平台的构建[J].江苏农业科学,2015,43(12):478.
 Zhang Wenyu,et al.Construction of smart agriculture platform based on model[J].Jiangsu Agricultural Sciences,2015,43(5):478.
[4]袁小平,徐江,侯攀峰.基于物联网的智慧农业监控系统[J].江苏农业科学,2015,43(03):376.
 Yuan Xiaoping,et al.Wisdom agricultural monitoring system based on internet of things[J].Jiangsu Agricultural Sciences,2015,43(5):376.
[5]王晓敏,邓春景.基于“互联网+”背景的我国智慧农业发展策略与路径[J].江苏农业科学,2017,45(16):312.
 Wang Xiaomin,et al.Strategy and path of Chinas wisdom agriculture development based on “Internet +” background[J].Jiangsu Agricultural Sciences,2017,45(5):312.
[6]程宏杰,朱震宇,陈泽.农业物联云的设计与实现[J].江苏农业科学,2017,45(03):179.
 Cheng Hongjie,et al.Design and implementation of agricultural IOT cloud[J].Jiangsu Agricultural Sciences,2017,45(5):179.
[7]陈洪涛,孙云娟.基于改进四边测距算法的智慧农业无线传感器精确定位[J].江苏农业科学,2017,45(17):234.
 Chen Hongtao,et al.Precise localization of wireless sensor based on improved quadrilateral localization algorithm[J].Jiangsu Agricultural Sciences,2017,45(5):234.
[8]邹一琴,张兵.网格型农业物联网资源封装和信息集成方法[J].江苏农业科学,2017,45(19):239.
 Zou Yiqin,et al.Method of resource encapsulation and information integration in grid-type agricultural internet of things[J].Jiangsu Agricultural Sciences,2017,45(5):239.
[9]邹一琴,张兵.基于SOA的网格型农业物联网[J].江苏农业科学,2017,45(24):202.
 Zou Yiqin,et al.Grid-type agricultural internet of things based on SOA[J].Jiangsu Agricultural Sciences,2017,45(5):202.
[10]赵俊仙.基于柯布-道格拉斯模型的我国“互联网+”智慧农业发展水平分析与路径建议[J].江苏农业科学,2018,46(04):289.
 Zhao Junxian,et al.Analysis and path recommendation of “Internet +” wisdom agriculture development based on Cobb-Douglas model[J].Jiangsu Agricultural Sciences,2018,46(5):289.

备注/Memo

备注/Memo:
收稿日期:2024-03-25
基金项目:江苏沿海地区农业科学研究所科研基金(编号:YHS202209);盐城市社会科学基金(编号:24skA219)。
作者简介:姜鹏(1994—),男,河南新乡人,硕士,研究实习员,主要从事农业机械化工程研究。E-mail:1786630553@qq.com。
通信作者:杨华,硕士,副研究员,主要从事经济作物研究,E-mail:ycyanghuayh@163.com;王为,博士,研究员,主要从事经济作物研究,E-mail:ww462@126.com。
更新日期/Last Update: 2025-03-05