|本期目录/Table of Contents|

[1]沈羽,张开梅,方炎明.蕨类植物修复土壤与净化水体的研究进展[J].江苏农业科学,2014,42(01):11-14.
 Shen Yu,et al.Research progress of application of ferns in restoration of soil and purification of water[J].Jiangsu Agricultural Sciences,2014,42(01):11-14.
点击复制

蕨类植物修复土壤与净化水体的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第42卷
期数:
2014年01期
页码:
11-14
栏目:
专论
出版日期:
2014-01-25

文章信息/Info

Title:
Research progress of application of ferns in restoration of soil and purification of water
作者:
沈羽 张开梅 方炎明
南京林业大学森林资源与环境学院,江苏南京 210037
Author(s):
Shen Yuet al
关键词:
植物修复重金属蕨类植物水体净化土壤修复
Keywords:
-
分类号:
X52;X53
DOI:
-
文献标志码:
A
摘要:
解决重金属污染是全球化环境污染处理难题之一,利用植物进行重金属污染的土壤修复和水体净化正引起人们的日益关注。在介绍植物修复理论的基础上,重点从蕨类植物角度出发,系统综述了陆生蕨类植物和水生蕨类植物在土壤修复和水体净化中的技术方法和综合应用情况,并对植物修复的发展趋势进行了展望,希望有助于促进该领域的深入研究。
Abstract:
-

参考文献/References:

[1]周启星. 镉的生物地球化学循环和污染生态学研究[D]. 沈阳:中国科学院沈阳应用生态研究所,1992.
[2]Zhang N M. The present situation and prospect of research on heavy metal pollution in soil plant systems[J]. Advances in Environment Science,1999,7(4):30-33.
[3]Gao Y,Yan X. Response of chara globularis and hydrodictyon reticulatum to lead pollution:their survival,bioaccumulation and defense[J]. Journal of Applied Phycology,2012,24(2):245-251.
[4]Lang I,Wernitznig S. Sequestration at the cell wall and plasma membranefacilitates zinc tolerance in the moss Pohlia drummondii[J]. Environmental and Experimental Botany,2011,74:186-193.
[5]Rozentsvet O A,Guschina I A,Bogdanova E S. The effect of copper and lead ions on growth and lipid composition of the fern Matteuccia sthruthiopteris[J]. Bioremediation Journal,2012,16(1):38-47.
[6]Hu R,Sun K,Su X,et al. Physiological responses and tolerance mechanisms to Pb in two xerophils:Salsola passerina Bunge and Chenopodium album L.[J]. Journal of Hazardous Materials,2012,205/206:131-138.
[7]唐世荣. 超积累植物在时空、科属内的分布特点及寻找方法[J]. 农村生态环境,2001,17(4):56-60.
[8]Brooks R R,Naidu S M,Malaisse F,et al. The elemental content of metallophytes from the copper/cobalt deposits of central Africa[J]. Royal Botanical Society of Belgium,1986,119(2):179-191.
[9]Ingrouille M J,Smirnoff N J. Thlaspi caerulescens J. & C. Presl.(T. alpestre L.)in Britain[J]. New Phytologist,1986,102(1):219-233.
[10]Baker A J M,Walker P L. Ecophysiology of metal uptake by tolerant plants[M]//Shaw A J. Heavy metal tolerance in plants:evolutionary aspects. Boca Raton,Florida:CRC Press Inc,1990:155-177.
[11]唐世荣,黄昌勇,朱祖祥. 超积累植物与找矿[J]. 物探与化探,1997,21(4):263-268.
[12]Brooks R R,Lee J,Reeves R D,et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration,1977,7:49-57.
[13]Chaney R L. Plant uptake of inorganic waste constituents[C]//Parr J F. Land Treatment of Hazardous Wastes. Noyes Data Corporation,New Jersey:Park Ridge,1983:50-76.
[14]Baker A M,Mcgrath S P,Sidoli C D,et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources Conservation and Recycling,1994,11(1/2/3/4):41-49.
[15]Brett R,Jose-Enrique F,Paula M,et al. Phytoextraction:an assessment of biogeochemical and economic viability[J]. Plant and Soil,2003,249(1):117-125.
[16]Salt D E,Blaylock M,Kumar N P,et al. Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants[J]. Nature Biotechnology,1995,13(5):468-474.
[17]Abreu M M,Santos E S,Ferreira M,et al. Cistus salviifolius a promising species for mine wastes remediation[J]. Journal of Geochemical Exploration,2012,113:86-93.
[18]Bauelos G S,Ajwa h A,Terry N,et al. Phytoremediation of selenium laden soils:A new technology[J]. Journal of Soil and Water Conservation,1997,52(6):426-430.
[19]Seeger E M,Reiche N,Kuschk P,et al. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands[J]. Environmental Science & Technology,2011,45(19):8467-8474.
[20]Zhu Y L,Zayed A M,Qian J H,et al. Phytoaccumulation of trace elements by wetland plants:Ⅱ. Water hyacinth[J]. Journal of Environmental Quality,1998,28(1):339-344.
[21]Gleba D,Borisjuk N V,Borisjuk L G,et al. Use of plant roots for phytoremediation and molecular farming[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(11):5973-5977.
[22]Kulli B,Balmer M,Krebs R,et al. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass[J]. Journal of Environmental Quality,1999,28(6):1699-1705.
[23]Meers E,Ruttens A,Hopgood M J,et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere,2005,58(8):1011-1022.
[24]陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报,2002,47(3):207-210.
[25]亢希然,范稚莲,乔西,等. 无菌条件下砷对蜈蚣草配子体生长发育的影响[J]. 广西植物,2007,27(6):882-885.
[26]谢景千,雷梅,陈同斌,等. 蜈蚣草对污染土壤中As、Pb、Zn、Cu的原位去除效果[J]. 环境科学学报,2010,30(1):165-171.
[27]Ma L Q,Komar K M,Tu C,et al. A fern that hyperaccumulates arsenic[J]. Nature,2001,6820:409,579.
[28]Koller C E,Patrick J W,Rose R J,et al. Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br[J]. Bulletin of Environmental Contamination and Toxicology,2008,80(2):128-133.
[29]Chen J,Shiyab S,Han F X,et al. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata[J]. Ecotoxicology,2009,18(1):110-121.
[30]Roccotiello E,Manfredi A,Drava G,et al. Zinc tolerance and accumulation in the ferns Polypodium cambricum L. and Pteris vittata L.[J]. Ecotoxicology and Environmental Safety,2010,73(6):1264-1271.
[31]李文学,陈同斌. 超富集植物吸收富集重金属的生理和分子生物学机制[J]. 应用生态学报,2003,14(4):627-631.
[32]Chang J S,Yoon I H,Kim K W. Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[33]Kumari A,Lal B,Pakade Y B,et al. Assessment of bioaccumulation of heavy metal by Pteris vittata L. growing in the vicinity of fly ash[J]. International Journal of Phytoremediation,2011,13(8):779-787.
[34]刘足根,杨国华,杨帆,等. 赣南钨矿区土壤重金属含量与植物富集特征[J]. 生态学杂志,2008,27(8):1345-1350.
[35]Zheng Y Q,Xu W Z,Ma M,et al. Plant regeneration of the arsenic hyperaccumulator Pteris vittata L. from spores and identification of its tolerance and accumulation of arsenic and copper[J]. Acta Physiologiae Plantarum,2008,30(2):249-255.
[36]Srivastava M,Ma L Q,Rathinasabapathi B,et al. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L.[J]. Bioresource Technology,2009,100(3):1115-1121.
[37]Sundaram S,Wu S,Ma L Q,et al. Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves[J]. Plant,Cell & Environment,2009,32(7):851-858.
[38]Mathews S,Ma L Q,Bala R,et al. Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L.[J]. Environmental and Experimental Botany,2009,65(2/3):282-286.
[39]Zhang K M,Deng T,Fang Y M. Arsenic and lead induced changes in the frond physiology and ultrastructure of Pteris multifida Poir.[C]. The International Conference on Remote Sensing,Environment and Transportation Engineering,2011:128-135.
[40]Zhang K M,Deng T,Fang Y M,et al. Influence of co-contamination of As and Pb on the frond physiology and ultrastructure of Pteris vittata L.[J]. Fresenius Environmental Bulletin,2011,21(8a):2215-2223.
[41]Zhang K M,Deng T,Fang Y M,et al. Compartmentalization of heavy metal in fern under As and Pb co-exposure:a case study[C]. The International Conference on Remote Sensing,Environment and Transportation Engineering,2012:344-352.
[42]邓滔. 井栏边草和蜈蚣草对As-Pb胁迫的富集作用[D]. 南京:南京林业大学,2008:1-50.
[43]Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant and Soil,1987,101(1):15-20.
[44]Chen Z H,Masayuki S,Kang Y M,et al. Zinc and cadmium uptake from a metalliferous soil by a mixed culture of Athyrium yokoscense and Arabis flagellosa[J]. Soil Science and Plant Nutrition,2009,55(2):315-324.
[45]Aleksandra S C,Krzysztof K,Stankiewicz A,et al. Rhizomes and fronds of Athyrium filix-femina as possible bioindicators of chemical elements from soils over different parent materials in southwest Poland[J]. Ecological Indicators,2011,11(5):1105-1111.
[46]McGrath S P,Zhao F J. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology,2003,14(3):277-282.
[47]贾恒. 华东蹄盖蕨对砷和铅胁迫的生理响应和抗逆性[D]. 南京:南京林业大学,2010.
[48]刘晓双,亦如瀚,吴锦标,等. 硫酸厂废水污染区土壤和植物中重金属分布特征的研究——以云浮市某硫酸厂为例[J]. 安徽农业科学,2009,37(29):14319-14320.
[49]Moreno-Jiménez E,Peúalosa J M,Manzano R,et al. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid(Spain) and their transference to wild flora[J]. Journal of Hazardous Materials,2009,162(2/3):854-859.
[50]Samecka-Cymerman A,Stankiewicz A,Kolon K,et al. Market basket analysis:a new tool in ecology to describe chemical relations in the environment—a case study of the fern Athyrium distentifolium in the Tatra National Park in Poland[J]. Journal of Chemical Ecology,2010,36(9):1029-1034.
[51]Soltan M E,Rashed M N. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations[J]. Advances in Environmental Research,2003,7(2):321-334.
[52]袁蓉,刘建武,成旦红,等. 凤眼莲对多环芳烃(萘)有机废水的净化[J]. 上海大学学报:自然科学版,2004,10(3):272-276.
[53]楚建周,王圣瑞,金相灿,等. 基质营养状况对黑藻生长及光合作用的影响[J]. 生态环境,2006,15(4):702-707.
[54]Rahman M A,Hasegawa H,Ueda K,et al. Influence of phosphate andironionsin selective uptake of arsenic species by water fern(Salvinia natans L.)[J]. Chemical Engineering Journal,2008,145(2):179-184.
[55]Dhir B,Sharmila P,Pardha Saradhi P,et al. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater[J]. Ecotoxicology and Environmental Safety,2009,72(6):1790-1797.
[56]Dhir B,Nasim S A,Sharmila P,et al. Heavy metal removal potential of dried Salvinia biomass[J]. International Journal of Phytoremediation,2010,12(2):133-141.
[57]Núez-López R A,Meas Y,Gama S C,et al. Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation[J]. Journal of Hazardous Materials,2008,154(1/2/3):623-632.
[58]Prado C,Rodríguez-Montelongo L,González J A,et al. Uptake of chromium by Salvinia minima:effect on plant growth,leaf respiration and carbohydrate metabolism[J]. Journal of Hazardous Materials,2010,177(1/2/3):546-553.
[59]Estrella-Gómez N E,Sauri D E,Enrique Z P,et al. Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS[J]. Environmental and Experimental Botany,2012,75:188-194.
[60]Arora A,Saxena S,Sharma D K. Tolerance and phytoaccumulation of chromium by three Azolla species[J]. World Journal of Microbiology and Biotechnology,2006,22(2):97-100.
[61]Rai P K. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata[J]. International Journal of Phytoremediation,2008,10(5):430-439.

相似文献/References:

[1]蒯广东,李轶,方晓航,等.硫氧化菌生物淋滤修复重金属污染研究进展[J].江苏农业科学,2013,41(05):335.
 Kuai Guangdong,et al.Research progress on heavy metal pollution restoring by bioleaching of sulfur-oxidizing bacteria[J].Jiangsu Agricultural Sciences,2013,41(01):335.
[2]赖颖,赵锦慧,杨同文,等.发酵性结合酵母菌对重金属吸附能力的研究[J].江苏农业科学,2014,42(11):398.
 Lai Ying,et al(98).Study on adsorption capacity of fermentation of yeast to heavy metals[J].Jiangsu Agricultural Sciences,2014,42(01):398.
[3]吴少飞,丁竹红,胡忻,等.EDTA及其与柠檬酸交替对污染水稻土壤重金属元素的分步连续提取研究[J].江苏农业科学,2014,42(11):369.
 Wu Shaofei,et al(9).Study on sequential extraction of heavy metal from contaminated paddy soil using EDTA and citric acid[J].Jiangsu Agricultural Sciences,2014,42(01):369.
[4]李洋,游少鸿,林子雨,等.菖蒲对5种重金属富集能力的比较[J].江苏农业科学,2014,42(11):383.
 Li Yang,et al(8).Comparative study on enrichment capacity of calamus to five kinds of heavy metals[J].Jiangsu Agricultural Sciences,2014,42(01):383.
[5]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(01):386.
[6]周秦,黄剑林.ICP-MS法与石墨炉原子吸收法测定水中重金属含量的比较[J].江苏农业科学,2013,41(06):283.
 Zhou Qin,et al.Comparison of ICP-MS method and graphite furnace atomic absorption spectrometry in determination of heavy metals contents in water[J].Jiangsu Agricultural Sciences,2013,41(01):283.
[7]李恒,龙柱,冯群策.废纸脱墨污泥蚯蚓生物处理效应[J].江苏农业科学,2014,42(09):358.
 Li Heng,et al.Biological treatment effect of waste paper deinking sludge by earthworm[J].Jiangsu Agricultural Sciences,2014,42(01):358.
[8]刘贵巧,王永霞,王建明,等.4种食用菌中重金属含量及食用安全评价[J].江苏农业科学,2014,42(09):268.
 Liu Guiqiao,et al.Heavy metal contents and food safety assessment of 4 kinds of edible fungi[J].Jiangsu Agricultural Sciences,2014,42(01):268.
[9]邹烨燔,李勇,赵志忠,等.东寨港红树林沉积物重金属的垂向分异及污染评价[J].江苏农业科学,2014,42(08):327.
 Zou Yefan,et al.Vertical distribution and pollution assessment of heavy metals in sediment of Dongzhai Port mangroves[J].Jiangsu Agricultural Sciences,2014,42(01):327.
[10]牟新利,郭佳,刘少达,等.三峡库区农林土壤重金属形态分布与污染评价[J].江苏农业科学,2013,41(09):314.
 Mou Xinli,et al.Distribution of heave metals and pollution assessment of agriculture and forest soils in Three Gorges Reservoir Area[J].Jiangsu Agricultural Sciences,2013,41(01):314.
[11]吕华.生物表面活性剂对芥菜重金属镉和铅的修复效果[J].江苏农业科学,2016,44(11):430.
 Lü Hua.Effects of surfactants on phytoremediation of cadmium and plumbum on Brassica juncea[J].Jiangsu Agricultural Sciences,2016,44(01):430.
[12]冯子龙,卢信,张娜,等.农艺强化措施用于植物修复重金属污染土壤的研究进展[J].江苏农业科学,2017,45(02):14.
 Feng Zilong et al.Research progress on application of agronomic enhancement measures in phytoremediation of heavy metal contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(01):14.
[13]杨卓,陈婧.重金属污染土壤植物修复的EDTA调控效果[J].江苏农业科学,2017,45(02):258.
 Yang Zhuo,et al.Effect of adding EDTA on phytoremediation of heavy metal contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(01):258.
[14]任海彦,胡健,胡毅飞.重金属污染土壤植物修复研究现状与展望[J].江苏农业科学,2019,47(01):5.
 Ren Haiyan,et al.Research progress and prospect of phytoremediation of heavy metal contaminated soils[J].Jiangsu Agricultural Sciences,2019,47(01):5.
[15]韩承龙,于雪,莫训强,等.我国盐生植物在土壤重金属污染修复中的应用述评[J].江苏农业科学,2022,50(4):17.
 Han Chenglong,et al.Review on application of halophytes in soil heavy metal pollution remediation in China[J].Jiangsu Agricultural Sciences,2022,50(01):17.
[16]戚琳,宋修超,沈新,等.3-吲哚乙酸对植物修复重金属污染土壤的增效作用[J].江苏农业科学,2022,50(4):193.
 Qi Lin,et al.Synergistic effect of 3-indoleacetic acid on phytoremediation of heavy metal contaminated soil[J].Jiangsu Agricultural Sciences,2022,50(01):193.

备注/Memo

备注/Memo:
收稿日期:2013-05-23
基金项目:国家自然科学基金(编号:31200233);中国科学院南京土壤研究所科研项目。
作者简介:沈羽(1988—),男,江苏苏州人,硕士,研究方向为环境生物学。Email:sheyttmax@gmail.com。
通信作者:方炎明,博士,教授,研究方向为环境生物学。E-mail:jwu4@njfu.edu.cn。
更新日期/Last Update: 2014-01-25