|本期目录/Table of Contents|

[1]薛涛涛,边金,伍陆,等.酿酒酵母组蛋白H3K56A突变菌株的构建及其对细胞生长的影响[J].江苏农业科学,2016,44(12):77-81.
 Xue Taotao,et al.Construction of histone H3K56A mutant of Saccharomyces cerevisiae and its effects on cell growth[J].Jiangsu Agricultural Sciences,2016,44(12):77-81.
点击复制

酿酒酵母组蛋白H3K56A突变菌株的构建
及其对细胞生长的影响
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年12期
页码:
77-81
栏目:
生物技术
出版日期:
2016-12-25

文章信息/Info

Title:
Construction of histone H3K56A mutant of Saccharomyces cerevisiae and its effects on cell growth
作者:
薛涛涛边金伍陆赵秀娟崔向军蔡禄
内蒙古科技大学数理与生物工程学院,内蒙古包头 014010
Author(s):
Xue Taotaoet al
关键词:
酿酒酵母H3K56A突变菌组蛋白修饰两步替换法同源重组高盐环境高温环境抗逆机制
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
组蛋白修饰,例如甲基化、乙酰化等修饰对基因表达和细胞生长至关重要。为揭示组蛋白H3第56位赖氨酸(K)修饰对酵母细胞生长的重要性,构建H3K56定点突变为丙氨酸(A)的组蛋白突变株H3K56A,并对其在高温、高盐等条件下的生长状况进行初步检测。根据酵母同源重组的原理,采用两步替换法构建H3K56A突变菌株,用分光光度法测定突变菌株的生长曲线,并分别在高盐、高温条件下检测突变体的表型。结果表明,酿酒酵母组蛋白H3K56A突变菌株构建成功,其生长曲线与野生型无明显差异;H3K56A突变株对高温、高盐条件均较敏感,且在高盐条件下,菌体生长缓慢、菌落偏小,表明组蛋白H3K56位点的修饰可能与酿酒酵母抗高盐、高温机制有关。
Abstract:
-

参考文献/References:

[1]Jiang C,Pugh B F. Nucleosome positioning and gene regulation:advances through genomics[J]. Nature Reviews Genetics,2009,10(3):161-172.
[2]Thoma F,Koller T,Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin[J]. Journal of Cell Biology,1979,83:403-427.
[3]周蔚,王世鑫. 组蛋白修饰与基因调控[J]. 国外医学:分子生物学分册,2003,25(2):71-73.
[4]Smith M M,Murray K. Yeast H3 and H4 histone messenger RNAs are transcribed from two non-allelic gene sets[J]. Journal of Molecular Biology,1983,169(3):641-661.
[5]Smith M M,Stirling V B. Histone H3 and H4 gene deletions in Saccharomyces cerevisiae[J]. Journal of Cell Biology,1988,106(3):557-566.
[6]Hereford L,Fahrner K,Woolford J,et al. Isolation of yeast histone genes H2A and H2B[J]. Cell,1979,18(4):1261-1271.
[7]Ng H H,Feng Q,Wang H B,et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association[J]. Genes & Development,2002,16(12):1518-1527.
[8]蒋智文,刘新光,周中军. 组蛋白修饰调节机制的研究进展[J]. 生物化学与生物物理进展,2009,36(10):1252-1259.
[9]Kouzarides T. Chromatin modifications and their function[J]. Cell,2007,128(4):693-705.
[10]Chen H,Fan M,Pfeffer L M,et al. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis[J]. Nucleic Acids Research,2012,40(14):6534-6546.
[11]Faulk C,Dolinoy D C. Timing is everything The when and how of environmentally induced changes in the epigenome of animals[J]. Epigenetics,2011,6(7):791-797.
[12]Vaquero A,Reinberg D. Calorie restriction and the exercise of chromatin[J]. Genes & Development,2009,23(16):1849-1869.
[13]Dai J B,Hyland E M,Yuan D S,et al. Probing nucleosome function:A highly versatile library of synthetic histone H3 and H4 mutants[J]. Cell,2008,134(6):1066-1078.
[14]Gietz R D,Schiestl R H,Willems A R,et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure[J]. Yeast,1995,11(4):355-360.
[15]Sterner D E,Berger S L. Acetylation of histones and transcription-related factors[J]. Microbiology and Molecular Biology Reviews,2000,64(64):435-459.
[16]Williams S K,Truong D,Tyler J K. Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(26):9000-9005.
[17]Recht J,Tsubota T,Tansy J C,et al. Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation,a modification associated with S phase in mitosis and meiosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(18):6988-6993.
[18]Morano K A,Grant C M,Moye-Rowley W S. The response to heat shock and oxidative stress in saccharomyces cerevisiae[J]. Genetics,2012,190(4):1157-1195.
[19]Akerfelt M,Morimoto R I,Sistonen L. Heat shock factors:integrators of cell stress,development and lifespan[J]. Nature Reviews Molecular Cell Biology,2010,11(8):545-555.
[20]Yamamoto N,Maeda Y,Ikeda A,et al. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae[J]. Eukaryotic Cell,2008,7(5):783-790.

相似文献/References:

[1]王震,刘标,陈薇,等.养殖污水中氨氮降解菌的分离、筛选及鉴定[J].江苏农业科学,2013,41(08):377.
 Wang Zhen,et al.Isolation,screening and identification of ammonia nitrogen degradation strains from aquaculture sewage[J].Jiangsu Agricultural Sciences,2013,41(12):377.
[2]王珊珊,徐海洋,王世明.酵母穿梭质粒pXZ200的构建[J].江苏农业科学,2015,43(08):31.
 Wang Shanshan,et al.Construction of yeast shuttle plasmid pXZ200[J].Jiangsu Agricultural Sciences,2015,43(12):31.
[3]费文斌,雍晓雨,徐俊,等.1株耐热产乙醇酵母的分离、鉴定与性能测试[J].江苏农业科学,2015,43(03):319.
 Fei Wenbin,et al.Separation,identification and performance test of a strain of heat-resisting and alcohol producing yeast[J].Jiangsu Agricultural Sciences,2015,43(12):319.
[4]叶云,付军鹏,李祎予,等.紫檀芪处理对酿酒酵母基因组表达变化的影响[J].江苏农业科学,2017,45(05):44.
 Ye Yun,et al.Effect of pterostilbene processing on genome expression of Saccharomyces cerevisiae[J].Jiangsu Agricultural Sciences,2017,45(12):44.
[5]张传丽,高明侠,董玉玮,等.乙醛脱氢酶基因表达载体的构建及表达条件筛选[J].江苏农业科学,2018,46(07):40.
 Zhang Chuanli,et al.Construction of expression vector and screening of expression conditions of acetaldehyde dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(12):40.
[6]谢鹏,袁园,葛莹,等.酵母菌发酵对常用饲料原料营养指标和抗营养因子含量的影响[J].江苏农业科学,2019,47(21):241.
 Xie Peng,et al.Effects of yeast fermentation on nutritive parameters and anti-nutritive factor contents in common feed stuff[J].Jiangsu Agricultural Sciences,2019,47(12):241.
[7]韦梦婷,王英,刘小莉,等.低度黑莓果酒发酵菌株筛选与工艺优化[J].江苏农业科学,2021,49(3):156.
 Wei Mengting,et al.Screening of fermentation strains and optimization of process for low-alcohol blackberry wine[J].Jiangsu Agricultural Sciences,2021,49(12):156.

备注/Memo

备注/Memo:
收稿日期:2015-11-02
基金项目:国家自然科学基金(编号:61361014、31260274);内蒙古自然科学基金(编号:2015MS0334)。
作者简介:薛涛涛(1990—),女,山西临县人,硕士研究生,主要从事表观遗传学研究。E-mail:xuetaotao196485@163.com。
通信作者:赵秀娟,博士,教授,主要从事表观遗传学研究。E-mail:zhaoxiujuan@imust.cn。
更新日期/Last Update: 2016-12-25