|本期目录/Table of Contents|

[1]吕东,李丹丹,徐汝聪,等.粳稻蔗糖转运蛋白基因OsSUTs在灌浆期的表达特点[J].江苏农业科学,2020,48(20):56-61,74.
 Lü Dong,et al.Expression characteristics of sucrose transporter gene OsSUTs in japonica rice during grain filling stage[J].Jiangsu Agricultural Sciences,2020,48(20):56-61,74.
点击复制

粳稻蔗糖转运蛋白基因OsSUTs在灌浆期的表达特点(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第20期
页码:
56-61,74
栏目:
生物技术
出版日期:
2020-10-20

文章信息/Info

Title:
Expression characteristics of sucrose transporter gene OsSUTs in japonica rice during grain filling stage
作者:
吕东123李丹丹24徐汝聪123张春龙123杨宏123张健博123金寿林123洪汝科123谭学林123
1.云南农业大学农学与生物技术学院,云南昆明650201;2.云南农业大学稻作研究所,云南昆明650201;
3.云南省杂交粳稻工程技术研究中心,云南昆明650201;4.云南农业大学植物保护一级学科博士后流动站,云南昆明650201
Author(s):
Lü Donget al
关键词:
蔗糖转运蛋白基因表达灌浆期粳稻
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
蔗糖转运蛋白编码基因(SUTs)的表达在植物生长发育过程中的蔗糖转运与分配途径中起着至关重要的作用。由粳米生产的稻米具有良好的适口性,其市场需求量也越来越大,在稻米生产过程中,灌浆期是决定水稻产量和品质的重要时期。由此可见,研究粳稻灌浆期蔗糖转运蛋白编码基因(OsSUTs)的表达可为高产优质粳稻品种的选育和栽培提供有价值的参考。以云南农业大学稻作研究所保育的粳稻品系为材料,研究粳稻灌浆期叶片、穗部中OsSUTs基因的表达特点。结果表明,在粳稻叶片中,OsSUT2基因的表达量最高,而其余4个基因的表达量由高到低排序依次为OsSUT4OsSUT1OsSUT5OsSUT3。穗部不同基因表达量的排序基本与叶片中的相同,由高到低为OsSUT2OsSUT4OsSUT5OsSUT1OsSUT3,不同的是OsSUT5OsSUT1表达量的排序位置发生了对调。对比叶片、穗部中OsSUTs基因的表达量发现,除OsSUT1基因在穗部中的表达量低于在叶片中的表达量外,其他4个基因(OsSUT2OsSUT3OsSUT4OsSUT5)的表达量均是穗中高于叶片中。在叶片中,OsSUT3OsSUT4OsSUT5这3个基因间的相关性较高,呈极显著正相关关系;但在穗中,OsSUTs基因间的相关性都较高,而且都达到了极显著正相关水平。研究结果可为人们深入认识水稻OsSUTs基因的表达特点及指导水稻高产优质育种生产提供理论参考。
Abstract:
-

参考文献/References:

[1]程式华,胡培松. 中国水稻科技发展战略[J]. 中国水稻科学,2008,22(3):223-226.
[2]胡锋. 保障我国粮食安全的水稻品种创新与应用研究[J]. 种子,2009,28(2):106-107,110.
[3]陈温福,潘文博,徐正进. 我国粳稻生产现状及发展趋势[J]. 沈阳农业大学学报,2006,37(6):801-805.
[4]胡兰香. 南方粳稻育种分析[J]. 南方农业,2018,12(18):180-181.
[5]Wang L,Lu Q T,Wen X G,et al. Enhanced sucrose loading improves rice yield by increasing grain size[J]. Plant Physiology,2015,169(4):2848-2862.
[6]Jung D L,Jung-Ⅱ C,Youn-Ⅱ P,et al. Sucrose transport from source to sink seeds in rice[J]. Physiologia Plantarum,2006,126(4):517-584.
[7]Izabela A,Chincinska,Johannes L,et al. Sucrose transporter StSUT4 from potato affects flowering,tuberization,and shade avoidance response[J]. Plant Physiology,2008,146(2):515-528.
[8]He H,Chincinska I,Hackel A et al. Phloem mobility and stability of sucrose transporter transcripts[J]. The Open Plant Science Journal,2008,2:1-14.
[9]Jia W Q,Zhang L J,Wu D,et al. Sucrose transporter AtSUC9 mediated by a low sucrose level is involved in arabidopsis abiotic stress resistance by regulating sucrose distribution and ABA accumulation[J]. Plant Physiology,2015,56(8):1574-1587.
[10]Ma Q J,Sun M H,Lu J,et al. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes[J]. Plant Physiology,2017,174(4):2348-2362.
[11]Aoki N,Hirose T,Scofield G N,et al. The sucrose transporter gene family in rice[J]. Plant & Cell Physiology,2003,44(3):223-232.
[12]Hirose T,Zhang Z J,Miyao A,et al. Disruption of a gene for rice sucrose transporter,OsSUT1,impairs pollen function but pollen maturation is unaffected[J]. J Exp Bot,2010,61(13):3639-3646.
[13]孙学武. 生育后期过表达OsSUT1基因对水稻碳水化合物与粒重的影响[D]. 长沙:中南大学隆平分院,2013:3-4.
[14]Miyazaki M,Araki M,Okamura K,et al. Assimilate translocation and expression of sucrose transporter,OsSUT1,contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi[J]. Journal of Plant Physiology,2013,170(18):1579-1584.
[15]Eom J S,Cho J I,Reinders A,et al. Impaired function of the tonoplast-localized sucrose transporter in rice,OsSUT2,limits the transport of vacuolar reserve sucrose and affects plant growth[J]. Plant Physiol,2011,157(1):109-119.
[16]张武君,管其龙,付艳萍,等. 反义抑制水稻蔗糖转运蛋白基因(OsSUT5)的表达降低其愈伤组织诱导和植株再生频率[J]. 农业生物技术学报,2014,22(7):825-831.
[17]Sun A J,Dai Y,Zhang X S,et al. A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M.[J]. Journal of Integrative Plant Biology,2011,53(7):586-595.
[18]Willems E,Leyns L,Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates[J]. Analytical Biochemistry,2008,379(1):127-129.
[19]Schulze W X,Reinders A,Ward J,et al. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system.[J]. BMC Biochemistry,2003,4:3.
[20]Barker L,Kühn C,Weise A et al. SUT2,a putative sucrose sensor in sieve elements[J]. Plant Cell,2000,12(7):1153-1164.
[21]Hirose T,Imaizumi N,Scofield G N et al. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.) [J]. Plant & Cell Physiology,1997,38(12):1389-1396.
[22]孙爱君. 水稻蔗糖转运蛋白基因的鉴定、表达分析及遗传转化[D]. 北京:中国科学院遗传与发育生物学研究所,2005:56-58.
[23]洪海强. 过表达OsSUT2OsSUT5籼稻的灌浆生理[D]. 福州:福建农林大学,2008.
[24]Bush D R. Inhibitors of the proton-sucrose symport[J]. Bush,1993,307(2):355-360.
[25]Murata Y. Rice[C]//Evans L T. Crop physiolog. Cambridge:Cambridge University Press,1977.
[26]杜琳. OsSUT对水稻灌浆生理的分子调控[D]. 福州:福建农林大学,2010:9-10.
[27]王旭明,赵夏夏,陈景阳,等. 盐胁迫下水稻孕穗期SS和SPS活性与糖积累的响应及其相关性分析[J]. 江苏农业学报,2018,34(3):481-486.
[28]Sun Y,Reinders A,Lafleur K R,et al. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5 [J]. Plant & Cell Physiology,2010,51(1):114-122.
[29]Evance L T. 作物产量的生理基础[M]. 北京:中国农业出版社,1978:253-274.
[30]Murayama N,Oshima M,Tsukahara S. Studies on the dynamic status of substance during ripening processes in the rice plant Ⅵ [J]. J Sci Soil Manure,1961,32:261-265.
[31]Yan S,Zou G H,Li S J,et al. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics,2011,123(7):1173-1181.
[32]Wang E T,Wang J J,Zhu X D,et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics,2008,40(11):1370-1374.
[33]Wang E T,Xu X,Zhang L,et al. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication[J]. BMC Evol Biol,2010,10:1471-2148.
[34]Budsaraporn N,Anna S,Taito T,et al. Characterization of rice functional monosaccharide transporter,OsMST5[J]. Bioscience Biotechnology and Biochemistry,2014,67(3):556-562.

相似文献/References:

[1]张婷婷,马磊.枯草杆菌启动子P43及Pamy的转录活性[J].江苏农业科学,2014,42(12):56.
 Zhang Tingting,et al.Transcriptional activity of Bacillus subtilis promoter P43 and Pamy[J].Jiangsu Agricultural Sciences,2014,42(20):56.
[2]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(20):150.
[3]李静婷,王健胜,杨风岭.小麦MITE转座子对sHSP基因的表达调控研究[J].江苏农业科学,2015,43(12):29.
 Li Jingting,et al.Regulation of MITE on expression of sHSP gene in wheat[J].Jiangsu Agricultural Sciences,2015,43(20):29.
[4]金素钰,王国生,徐亚欧,等.牦牛葡萄糖转运蛋白和单羧酸转运蛋白基因的克隆测序及在肌肉中的表达[J].江苏农业科学,2014,42(08):29.
 Jin Suyu,et al.Cloning, sequencing and expression in muscle of glucose transporter protein and single acid transporter protein genes in yak[J].Jiangsu Agricultural Sciences,2014,42(20):29.
[5]夏卜贤,安云蓉,高建明,等.甜高粱的糖分积累与蔗糖合成酶基因表达规律的相关性[J].江苏农业科学,2016,44(02):133.
 Xia Buxian,et al.Correlation between sugar accumulation and sucrose synthase gene expression of sugar grass[J].Jiangsu Agricultural Sciences,2016,44(20):133.
[6]王平,赵巧巧,黄鹰.丙酮醛降解酶基因的克隆与高效表达[J].江苏农业科学,2016,44(02):62.
 Wang Ping,et al.Cloning and effective expression of methylglyoxal degradation enzyme gene[J].Jiangsu Agricultural Sciences,2016,44(20):62.
[7]赵美荣,李永春,刘辉,等.抗旱性不同的小麦扩展蛋白活性及基因表达分析[J].江苏农业科学,2016,44(01):108.
 Zhao Meirong,et al.Analysis of expansin activity and gene expression in wheat cultivars with different drought resistance[J].Jiangsu Agricultural Sciences,2016,44(20):108.
[8]董亚青,朱文斗,王琳琳,等.鸡α-干扰素在毕赤酵母中的表达及其表达条件优化[J].江苏农业科学,2015,43(11):275.
 Dong Yaqing,et al.Expression of chicken α-interferon in Pichia pastoris and optimization of expression conditions[J].Jiangsu Agricultural Sciences,2015,43(20):275.
[9]孙正国.龙葵对镉污染土壤的响应及其修复效应研究[J].江苏农业科学,2015,43(10):397.
 Sun Zhengguo.Response of Solanum nigrum to cadmium pollution in soil and its repair effects[J].Jiangsu Agricultural Sciences,2015,43(20):397.
[10]余璐璐,曹中权,刘龙山,等.盐芥CAS基因的生物信息学分析及在盐胁迫下的表达[J].江苏农业科学,2015,43(07):25.
 Yu Lulu,et al.Bioinformatics analysis of CAS gene and its expression profile under salt stress in Thellungiella salsuginea[J].Jiangsu Agricultural Sciences,2015,43(20):25.

备注/Memo

备注/Memo:
收稿日期:2019-12-31
基金项目:云南省院士工作站项目(编号:2018IC065)。
作者简介:吕东(1994—),男,湖北黄冈人,硕士,主要从事作物杂种优势利用研究。E-mail:lvdong1001@163.com。
通信作者:谭学林,博士,教授,主要从事作物遗传育种研究。E-mail:cyrtxl@163.com。
更新日期/Last Update: 2020-11-09