|本期目录/Table of Contents|

[1]张续周,李金秋,陈雪津,等.低温胁迫下乙酸叶醇酯对茶树耐寒性生理生化的影响[J].江苏农业科学,2021,49(24):127-132.
 Zhang Xuzhou,et al.Influences of Z-3-hexenyl acetate on cold resistance and physiological and biochemical parameters of tea plant under low temperature stress[J].Jiangsu Agricultural Sciences,2021,49(24):127-132.
点击复制

低温胁迫下乙酸叶醇酯对茶树耐寒性生理生化的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第24期
页码:
127-132
栏目:
园艺与林学
出版日期:
2021-12-20

文章信息/Info

Title:
Influences of Z-3-hexenyl acetate on cold resistance and physiological and biochemical parameters of tea plant under low temperature stress
作者:
张续周1 李金秋2 陈雪津2 王雯2 李芳2 马媛春2 房婉萍2 朱旭君2
1.青岛职业技术学院,山东青岛 266555; 2.南京农业大学园艺学院,江苏南京 210095
Author(s):
Zhang Xuzhouet al
关键词:
茶树绿叶挥发物乙酸叶醇酯低温胁迫耐寒性
Keywords:
-
分类号:
S571.101
DOI:
-
文献标志码:
A
摘要:
绿叶挥发物(GLVs)作为植物挥发物中的一类化合物,由C18和C16不饱和脂肪酸经酶催化分解形成的C6和C9醛、醇及其相应酯类组成。其中,乙酸叶醇酯是一种主要的GLVs,以Z-3-己烯醛和Z-3-己烯醇经酶作用合成。为了解乙酸叶醇酯在茶树耐寒性状中的作用,以一年生茶树品种中茶108为材料,使用乙酸叶醇酯后短时低温(4 ℃,1.5 h)和低温过夜(4 ℃,16 h)处理茶苗,测定茶树冷诱导基因表达和茶树生理生化特性指标。结果发现,乙酸叶醇酯在短时低温处理时可以提高冷诱导基因CsICE1、CsICE2、CsCBF1-CsCBF5的表达;在过夜低温处理时提高冷诱导基因CsRD1、CsRD2的表达;短时低温和过夜低温处理均能分别显著提高茶树过氧化物酶(POD)、过氧化氢酶(CAT)的酶活性,从而缓解低温胁迫对茶树的伤害。此外,乙酸叶醇酯还诱导自身合成途径关键酶基因CsADH1、CsADH3和CsLOX3的表达,进一步增强茶树耐寒能力。
Abstract:
-

参考文献/References:

[1]尹皓婵,李莉莉,宋宛霖,等. 茶树抗寒机理及其应用的研究进展[J]. 安徽农业科学,2019,47(4):22-25.
[2]时慧,王玉,周克福,等. 低温胁迫下茶树叶片活性氧代谢及渗透调节物质含量的变化规律[J]. 山东农业科学,2012,44(7):22-25.
[3]郝心愿,王璐,曾建明,等. 低温冻害对茶树生理的影响及应对技术[J]. 中国茶叶,2020,42(5):13-16.
[4]林郑和,钟秋生,游小妹,等. 低温胁迫对茶树抗氧化酶活性的影响[J]. 茶叶科学,2018,38(4):363-371.
[5]李叶云,庞磊,陈启文,等. 低温胁迫对茶树叶片生理特性的影响[J]. 西北农林科技大学学报(自然科学版),2012,40(4):134-138,145.
[6]王郁. 茶树低温应答相关转录因子CsICE1和CsCBF1的研究[D]. 合肥:安徽农业大学,2011:37-42.
[7]Gong Z Z,Xiong L M,Shi H Z,et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China(Life Sciences),2020,63(5):635-674.
[8]Yin Y,Ma Q P,Zhu Z X,et al. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress[J]. Plant Growth Regulation,2016,80(3):335-343.
[9]Wang P J,Chen X J,Guo Y C,et al. Identification of CBF transcription factors in tea plants and a survey of potential CBF target genes under low temperature[J]. International Journal of Molecular Sciences,2019,20(20):5137.
[10]刘东晓. 茶树CsCBF2转基因烟草的非生物胁迫耐受性分析[D]. 信阳:信阳师范学院,2017.
[11]黄永会,刘永翔,朱英,等. COR基因在植物抗寒基因工程中的作用[J]. 贵州农业科学,2014,42(12):37-42.
[12]陈书霞,陈巧,王聪颖,等. 绿叶挥发物代谢调控及分子机理研究进展[J]. 中国农业科学,2012,45(8):1545-1557.
[13]Bai J H,Baldwin E A,Imahori Y,et al. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit[J]. Postharvest Biology and Technology,2011,60(2):111-120.
[14]谢鑫鑫,林碧英,林忠平.绿叶挥发物合成相关基因及其生理生态功能[J]. 亚热带农业研究,2014,10(4):279-284.
[15]Sun H F,Li Z Y,Wu B,et al. Review of recent advances on the production and eco-physiological roles of green leaf volatiles[J]. Chinese Journal of Plant Ecology,2013,37(3):268-275.
[16]Hu S L,Chen Q H,Guo F,et al. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis[J]. Plant Molecular Biology,2020,103(3):287-302.
[17]Wang L,Baldwin E,Luo W,et al. Key tomato volatile compounds during postharvest ripening in response to chilling and pre-chilling heat treatments[J]. Postharvest Biology and Technology,2019,154:11-20.
[18]胡双玲.绿叶挥发物和组蛋白H3K4甲基化在茶树干旱胁迫响应中的功能研究[D]. 武汉:华中农业大学,2019:37.
[19]Yamauchi Y,Matsuda A,Matsuura N,et al. Transcriptome analysis of Arabidopsis thaliana treated with green leaf volatiles:possible role of green leaf volatiles as self-made damage-associated molecular patterns[J]. Journal of Pesticide Science,2018,43(3):207-213.
[20]Ju L J,Zhang C,Liao J J,et al. An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses,hormones,and signal substances[J]. Journal of Zhejiang University.Science.B,2018,19(8):596-609.
[21]Shen J Z,Zou Z W,Xing H Q,et al. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia sinensis[J]. International Journal of Molecular Sciences,2020,21(7):2433.
[22]朱小佩.茶树CBF基因的克隆与功能分析[D]. 信阳:信阳师范学院,2011:44.
[23]尹盈.茶树低温胁迫转录因子CsICE和CsCBF的亚细胞定位、表达分析及功能验证[D]. 南京:南京农业大学,2013:73.
[24]Wang Y,Jiang C J,Li Y Y,et al. CsICE1 and CsCBF1:two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports,2012,31(1):27-34.
[25]王智煜,李迎迎,胡雅倩,等. 四分体期低温胁迫对2个小麦品种幼穗结实率及生理特性的影响[J]. 江苏农业科学,2019,47(10):114-116.
[26]Chinnusamy V,Ohta M,Kanrar S,et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development,2003,17(8):1043-1054.
[27]Zhao C Z,Lang Z B,Zhu J K.Cold responsive gene transcription becomes more complex[J]. Trends in Plant Science,2015,20(8):466-468.
[28]Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.

相似文献/References:

[1]李金,魏艳丽,庞磊,等.茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J].江苏农业科学,2013,41(10):21.
 Li Jin,et al.Differences in expression of TCS1、TIDH and SAMS genes in caffeine synthetic route of Camellia Sinensis and their correlation with caffeine contents[J].Jiangsu Agricultural Sciences,2013,41(24):21.
[2]朱韦京,余树全,汪赛,等.不同酸雨作用方式对茶树幼苗生长与光合特征参数的影响[J].江苏农业科学,2014,42(10):232.
 Zhu Weijing,et al.Effects of different acid rain action modes on growth and photosynthetic parameters of Camellia sinensis seedlings[J].Jiangsu Agricultural Sciences,2014,42(24):232.
[3]李荣林,李珍珍,杨亦扬,等.以诱导抗性为基础的茶树病虫害控制新技术[J].江苏农业科学,2013,41(11):145.
 Li Ronglin,et al.New diseases and insect pests control techniques for tea tree based on induced resistance[J].Jiangsu Agricultural Sciences,2013,41(24):145.
[4]王雪萍,龚自明,高士伟,等.ABT1号生根粉对茶树穴盘扦插生根的影响[J].江苏农业科学,2013,41(11):277.
 Wang Xueping,et al.Effect of rooting powder ABT1 on rooting of tea tree plug seedlings[J].Jiangsu Agricultural Sciences,2013,41(24):277.
[5]周萌,李友勇,孙雪梅,等.基于EST-SSR标记的云南野生茶树遗传多样性分析[J].江苏农业科学,2013,41(12):22.
 Zhou Meng,et al.Genetic diversity analysis of wild tea trees in Yunnan Province based on EST-SSR markers[J].Jiangsu Agricultural Sciences,2013,41(24):22.
[6]杨亦扬,胡雲飞,李荣林,等.不同茶树品种的碧螺春茶适制性[J].江苏农业科学,2015,43(09):219.
 Yang Yiyang,et al.Study on processing suitability of Biluochun tea from different tea plant varieties[J].Jiangsu Agricultural Sciences,2015,43(24):219.
[7]胡雲飞,杨亦扬,李荣林,等.不同时段喷施叶面肥对春茶新梢生长与品质的影响[J].江苏农业科学,2015,43(07):170.
 Hu Yunfei,et al.Effects of sparying foliage fertilizer at different times on growth and quality of fresh tea new shoots[J].Jiangsu Agricultural Sciences,2015,43(24):170.
[8]李荣林,杨亦扬,胡雲飞,等.茶树的抗虫性和抗性育种研究[J].江苏农业科学,2015,43(05):1.
 Li Rongling,et al.Study on insect resistance and stress-resistance breeding of tea plant[J].Jiangsu Agricultural Sciences,2015,43(24):1.
[9]王海斌,叶江华,孔祥海,等.铜胁迫下不同茶树的生理响应及亚细胞水平铜分布特性[J].江苏农业科学,2016,44(11):219.
 Wang Haibin,et al.Physiological response and copper distribution characteristics in subcellular level of different tea tree under copper stress[J].Jiangsu Agricultural Sciences,2016,44(24):219.
[10]田甜,韦锦坚,陈远权,等.茶树的铝、硒、钙营养及互作研究综述[J].江苏农业科学,2016,44(12):29.
 Tian Tian,et al.On nutrition and interaction of aluminum, selenium and calcium in tea plant:a review[J].Jiangsu Agricultural Sciences,2016,44(24):29.

备注/Memo

备注/Memo:
收稿日期:2021-08-23
基金项目:国家自然科学基金(编号:31800588);青岛农业大学科研启动基金(编号:1118025);山东省良种工程子课题(编号:2321401);青岛职业技术学院重点研发专项(编号:2020ZDYF09);北茶技艺技能传承创新平台资助。
作者简介:张续周(1972—),男,山东菏泽人,硕士,副教授,主要从事茶树育种与生物技术研究。E-mail:jiaonancha@126.com。
通信作者:朱旭君,博士,副教授,研究方向为茶树育种与栽培。E-mail:zhuxujun@njau.edu.cn。
更新日期/Last Update: 2021-12-20