|本期目录/Table of Contents|

[1]陈绕生,薛林宝.纳米硒、铜对干旱胁迫下番茄生长、光合特性及产量的影响[J].江苏农业科学,2022,50(12):127-134.
 Chen Raosheng,et al.Influences of selenium and copper nanoparticles on tomato growth,photosynthetic characteristics and yield under drought stress[J].Jiangsu Agricultural Sciences,2022,50(12):127-134.
点击复制

纳米硒、铜对干旱胁迫下番茄生长、光合特性及产量的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第12期
页码:
127-134
栏目:
园艺与林学
出版日期:
2022-06-20

文章信息/Info

Title:
Influences of selenium and copper nanoparticles on tomato growth,photosynthetic characteristics and yield under drought stress
作者:
陈绕生1薛林宝2
1.江苏联合职业技术学院植物工程系,江苏淮安 223200; 2.扬州大学园艺园林与植保学院,江苏扬州 225009
Author(s):
Chen Raoshenget al
关键词:
纳米颗粒番茄干旱胁迫荧光参数基因表达水平产量
Keywords:
-
分类号:
S641.201
DOI:
-
文献标志码:
A
摘要:
随着农业技术的发展,越来越多的纳米技术已应用于农业生产中,然而纳米肥料对植物的影响尚不清楚。采用盆栽试验,研究干旱胁迫下施用纳米铜(Cu NPs)、纳米硒(Se NPs)对番茄生长、光合生理特性及产量的影响。结果表明,干旱胁迫(DS)条件下番茄干物质累积、根系形态、光合生理代谢及产量皆受到显著影响。DS条件下,与对照(CK)相比,施用Cu NPs(CU)、Se NPs(SE)及二者结合施用(CU+SE)处理均可有效增加番茄植株地上部、根系干物质累积量及根系性状指标,提高光合色素(叶绿素a、叶绿素b、类胡萝卜素)含量、光合特征参数、叶绿素荧光参数及上调表达光合作用基因(PetE、Psb28),处理间整体呈CK、CU<SE<CU+SE。正常水分(WW)条件下,与CK相比,施用Cu NPs、Se NPs可提高光合生理参数,但对植株生长参数及产量无明显影响。与WW条件下的CK相比,DS条件下纳米材料处理(CU、SE、CU+SE)植株生长及光合生理特征参数整体较低;产量变幅为-4.53%~-0.22%,且处理间差异不显著。可见干旱胁迫下施用Cu NPs、Se NPs可促进番茄植株生长发育、提高光合作用及维持产量,以二者结合施用处理效果较好。
Abstract:
-

参考文献/References:

[1]刘明,吕爱锋,武建军,等. 干旱对农业生态系统影响研究进展[J]. 中国农学通报,2014,30(32):165-171.
[2]温琦,赵文博,张幽静,等. 植物干旱胁迫响应的研究进展[J]. 江苏农业科学,2020,48(12):11-15.
[3]杨阳,申双和,马绎皓,等. 干旱对作物生长的影响机制及抗旱技术的研究进展[J]. 科技通报,2020,36(1):8-15.
[4]曹本福,姜海霞,刘丽,等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展[J]. 应用生态学报,2021,32(9):3385-3396.
[5]黄阔,张永强,李国慧. 化学元素硅、硒对作物健康生长作用的研究进展[J]. 植物医生,2019,32(5):16-19.
[6]Aslani F,Bagheri S,Muhd Julkapli N,et al. Effects of engineered nanomaterials on plants growth:an overview[J]. The Scientific World Journal,2014,2014:641759.
[7]Hochella Jr M F,Lower S K,Maurice P A,et al. Nanominerals,mineral nanoparticles,and Earth systems[J]. Science,2008,319(5870):1631-1635.
[8]González-García Y,Cárdenas-lvarez C,Cadenas-Pliego G,et al. Effect of three nanoparticles (Se,Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress[J]. Plants,2021,10(2):217.
[9]Hussein H A A,Darwesh O M,Mekki B B. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions[J]. Biocatalysis and Agricultural Biotechnology,2019,18:101080.
[10]Zahedi S M,Abdelrahman M,Hosseini M S,et al. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles[J]. Environmental Pollution,2019,253:246-258.
[11]Hernández-Hernández H,González-Morales S,Benavides-Mendoza A,et al. Effects of chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress[J]. Molecules,2018,23(1):178.
[12]Singh A,Singh N B,Hussain I,et al. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis[J]. Journal of Biotechnology,2017,262:11-27.
[13]韩承华,潘瑞瑞,刘野,等. Cu、Zn对水蕹菜生长的影响及Se的缓解作用[J]. 生态学杂志,2016,35(2):470-477.
[14]Quiterio-Gutiérrez T,Ortega-Ortiz H,Cadenas-Pliego G,et al. The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani[J]. International Journal of Molecular Sciences,2019,20(8):1950.
[15]付宇童,孙彤,王林,等. 纳米铜对小油菜(Brassica chinensis L.)种子发芽和幼苗生理生化特性的影响[J]. 农业环境科学学报,2020,39(11):2524-2531.
[16]高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.
[17]Zhang Y,Shi Y,Gong H J,et al. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress[J]. Journal of Integrative Agriculture,2018,17(10):2151-2159.
[18]宋会明,贺敬芝,梁军,等. 叶面喷施纳米硒肥对金丝小枣产量和品质的影响[J]. 中国土壤与肥料,2021(4):203-207.
[19]Morales-Espinoza M C,Cadenas-Pliego G,Pérez-Alvarez M,et al. Se nanoparticles induce changes in the growth,antioxidant responses,and fruit quality of tomato developed under NaCl stress[J]. Molecules,2019,24(17):3030.
[20]张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展[J]. 江苏农业科学,2021,49(17):39-45.
[21]Shi Y,Zhang Y,Han W H,et al. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.[J]. Frontiers in Plant Science,2016,7:196.
[22]王峰,闫家榕,陈雪玉,等. 光调控植物叶绿素生物合成的研究进展[J]. 园艺学报,2019,46(5):975-994.
[23]Song A L,Li P,Fan F L,et al. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress[J]. PLoS One,2014,9(11):e113782.
[24]Wang X P,Li Q Q,Pei Z M,et al. Effects of zinc oxide nanoparticles on the growth,photosynthetic traits,and antioxidative enzymes in tomato plants[J]. Biologia Plantarum,2018,62(4):801-808.
[25]Wang Y,Cai S Y,Yin L L,et al. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy[J]. Autophagy,2015,11(11):2033-2047.
[26]王志伟,王斌,张自阳,等. 盐胁迫对不同小麦品种萌发生长及光合特性的影响[J]. 河南科技学院学报(自然科学版),2021,49(6):8-13.
[27]杨继刚,石圣杰,赵平平,等. 蚕沙钝化修复复合重(类)金属污染土壤的效果及对小白菜生长的影响[J]. 福建农林大学学报(自然科学版),2021,50(6):832-838.
[28]郭卫珍,张亚利,奉树成. NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J]. 江苏农业学报,2021,37(3):562-569.
[29]Chen W,Yao X Q,Cai K Z,et al. Silicon alleviates drought stress of rice plants by improving plant water status,photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Research,2011,142(1):67-76.
[30]Zhu Y X,Guo J,Feng R,et al. The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress[J]. Plant and Soil,2016,406(1/2):231-249.
[31]Sun R X,Yang C H.Structure and function of photosystem Ⅱ and the environmental response of photosynthetic membrane[J]. Acta Biophysica Sinica,2012,28(7):537.
[32]田生科,李廷轩,杨肖娥,等. 植物对铜的吸收运输及毒害机理研究进展[J]. 土壤通报,2006,37(2):2387-2394.
[33]姜英,曾昭海,杨麒生,等. 植物硒吸收转化机制及生理作用研究进展[J]. 应用生态学报,2016,27(12):4067-4076.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(12):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(12):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(12):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(12):138.
[6]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(12):128.
[7]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(12):135.
[8]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(12):259.
[9]田福发,陈立昶,姜若勇,等.内置式秸秆反应堆对日光温室番茄和黄瓜生长的影响[J].江苏农业科学,2013,41(09):143.
 Tian Fufa,et al.Effect of built-in straw bio-reactor on growth of tomato and cucumber in greenhouse[J].Jiangsu Agricultural Sciences,2013,41(12):143.
[10]徐静,梁林洲,董晓英,等.4种有机肥源的堆肥茶生物化学性质及对番茄苗期生长的影响[J].江苏农业科学,2013,41(10):289.
 Xu Jing,et al.Biochemical properties of compost teas made from four kinds of organic fertilizer and their effects on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(12):289.

备注/Memo

备注/Memo:
收稿日期:2021-11-28
基金项目:江苏省创新课题(编号:SN1703)。
作者简介:陈绕生(1973—),男,江苏淮安人,硕士,副教授,主要从事园艺生产研究。E-mail:1048483719@qq.com。
通信作者:薛林宝,博士,教授,主要从事园林、园艺研究。E-mail:xlb@yzcn.net。
更新日期/Last Update: 2022-06-20