|本期目录/Table of Contents|

[1]丁宇,王马寅,唐敏强,等.高温胁迫下 2个棉花品种转录组可变剪切差异分析[J].江苏农业科学,2023,51(5):1-11.
 Ding Yu,et al.Study on transcriptome alternative splicing difference of two cotton varieties under high temperature stress[J].Jiangsu Agricultural Sciences,2023,51(5):1-11.
点击复制

高温胁迫下 2个棉花品种转录组可变剪切差异分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第5期
页码:
1-11
栏目:
“转录组学” 专栏
出版日期:
2023-03-05

文章信息/Info

Title:
Study on transcriptome alternative splicing difference of two cotton varieties under high temperature stress
作者:
丁宇王马寅唐敏强李子阳谢尚潜
海南大学,海南海口 570228
Author(s):
Ding Yuet al
关键词:
棉花高温胁迫全长转录组纳米孔测序可变剪切
Keywords:
-
分类号:
S562.01
DOI:
-
文献标志码:
A
摘要:
棉花(Gossypium hirsutum L.)是一种重要的经济作物,是世界上第二大的天然纺织纤维来源和重要的食用油来源。棉花对生物和非生物胁迫高度敏感,尤其是高温胁迫极易影响花粉的活力和花药的开裂。为了解析棉花在高温胁迫下基因转录水平的相应变化机制,开展了热敏和耐热2个棉花品种的全长转录组响应高温胁迫处理变化的研究。通过转录本的可变剪切分析发现,2个棉花品种在高温胁迫下可变剪切的总数显著增加。热敏品种Che61-72中发现了2 900个差异表达基因,并且差异基因在加热前样本(R0)和加热12 h后的样本(R12)中分别识别到了 13 251 个和25 296个可变剪切事件,其中内含子保留事件增加得最多,有3 837个。耐热品种新陆早36号中发现了 2 437 个差异表达基因,在加热前样本(T0)和加热12 h后的样本(T12)中鉴定到了11 248个和13 769个可变剪切事件,外显子跳跃事件变化得最大,增加了4 144个。富集分析发现,2个品种的差异基因都显著富集到了光系统Ⅰ的光捕获、叶绿体类囊体膜和光合作用-天线蛋白通路中,并筛选出5个关键基因(CPB3、A0A1U8IZF2、A0A1U8KCA2、A0A1U8NDW4和A0A1U8NI70),均被注释为叶绿素a/b结合蛋白,它们参与了调控棉花光合作用动态平衡。本研究为棉花在高温胁迫的调节机制的深入研究提供了理论依据,为后续耐高温的种质改良及新品种培育提供了数据支持。
Abstract:
-

参考文献/References:

[1]Han Z,Wang C,Song X,et al. Characteristics,development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton [J]. Theoretical and Applied Genetics,2006,112(3):430-439.
[2]Grover A,Mittal D,Negi M,et al. Generating high temperature tolerant transgenic plants:achievements and challenges [J]. Plant Science,2013,205:38-47.
[3]Zahid K R,Ali F,Shah F,et al. Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress:a review [J]. Frontiers in Plant Science,2016,7:937.
[4]Pettigrew W T. The effect of higher temperatures on cotton lint yield production and fiber quality [J]. Crop Science,2008,48(1):278-285.
[5]Burke J J,Wanjura D F. Plant responses to temperature extremes[M]//Physiology of cotton. Berlin:Springer,2010:123-128.
[6]Oosterhuis D M,Snider J L. High temperature stress on floral development and yield of cotton [M]//Oosterhuis D M. Stress physiology in cotton. Cordova,Tennessee:The Cotton Foundation,2011:1-24.
[7]Reddy K R,Kakanl V G,Zhao D,et al. Interactive effects of ultraviolet-B radiation and temperature on cotton physiology,growth,development and hyperspectral reflectance [J]. Photochemistry and Photobiology,2004,79(5):416-427.
[8]Liang Y,Gong Z,Wang J,et al. Nanopore-based comparative transcriptome analysis reveals the potential mechanism of high-temperature tolerance in cotton (Gossypium hirsutum L.) [J]. Plants,2021,10(11):2517.
[9]Reddy K,Hodges H,Reddy V. Temperature effects on cotton fruit retention [J]. Agronomy Journal,1992,84(1):26-30.
[10]Reddy V,Reddy K,and Baker D. Temperature effect on growth and development of cotton during the fruiting period [J]. Agronomy Journal,1991,83(1):211-217.
[11]Soliz L M A,Oosterhuis D M,Coker D L,et al. Physiological response of cotton to high night temperature [J]. Am J Plant Sci Biotechnol,2008,2:63-68.
[12]Barua D,Downs C A,Heckathorn S A. Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album[J]. Functional Plant Biology,2003,30(10):1071-1079.
[13]Min L,Zhu L,Tu L,et al. Cotton Gh CKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase [J]. The Plant Journal,2013,75(5):823-835.
[14]Wang Q,Liu N,Yang X,et al. Small RNA-mediated responses to low-and high-temperature stresses in cotton [J]. Scientific Reports,2016,6(1):1-14.
[15]Ma Y,Min L,Wang J,et al. A combination of genome-wide and transcriptome-wide association studies reveals genetic elements leading to male sterility during high temperature stress in cotton [J]. New Phytologist,2021,231(1):165-181.
[16]Barash Y,Calarco J A,Gao W,et al. Deciphering the splicing code [J]. Nature,2010,465(7294):53-59.
[17]Zhao L,Zhang H,Kohnen M V,et al. Analysis of transcriptome and epitranscriptome in plants using PacBio Iso-Seq and nanopore-based direct RNA sequencing [J]. Frontiers in Genetics,2019,10:253.
[18]Abdel-Ghany S E,Hamilton M,Jacobi J L,et al. A survey of the sorghum transcriptome using single-molecule long reads [J]. Nature Communications,2016,7(1):1-11.
[19]Wang B,Tseng E,Regulski M,et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing [J]. Nature communications,2016,7(1):1-13.
[20]Wang Q,Rio D C. JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns [J]. Proceedings of the National Academy of Sciences,2018,115(35):EB181-EB190.
[21]Wang X,Xu Y,Zhang S,et al. Genomic analyses of primitive,wild and cultivated citrus provide insights into asexual reproduction [J]. Nature Genetics,2017,49(5):765-772.
[22]Li H. Minimap2:pairwise alignment for nucleotide sequences [J]. Bioinformatics,2018,34(18):3094-3100.
[23]Tardaguila M,de la Fuente L,Marti C,et al. SQANTI:extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification [J]. Genome Research,2018,28(3):396-411.
[24]Trincado J L,Entizne J C,Hysenaj G,et al. SUPPA2:fast,accurate,and uncertainty-aware differential splicing analysis across multiple conditions [J]. Genome Biology,2018,19(1):40.
[25]Patro R,Duggal G,Love M I,et al. Salmon provides fast and bias-aware quantification of transcript expression [J]. Nature Methods,2017,14(4):417-419.
[26]Love M I,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biology,2014,15(12):550.
[27]Cantalapiedra C P,Hernández-Plaza A,Letunic L,et al. eggNOG-mapper v2:functional annotation,orthology assignments,and domain prediction at the metagenomic scale [J]. Molecular Biology and Evolution,2021,38(12):5825-5829.
[28]Yu G,Wang L G,Han Y,et al. clusterProfiler:an R package for comparing biological themes among gene clusters [J]. Omics,2012,16(5):284-287.
[29]Xie C,Mao X,Huang J,et al. KOBAS 2.0:a web server for annotation and identification of enriched pathways and diseases [J]. Nucleic Acids Res,2011,39(Web Server issue):W316-W322.
[30]Chaudhary S,Jabre I,Reddy A S N,et al. Perspective on alternative splicing and proteome complexity in plants [J]. Trends in Plant Science,2019,24(6):496-506.
[31]Kim S,Kim T H. Alternative splicing for improving abiotic stress tolerance and agronomic traits in crop plants [J]. Journal of Plant Biology,2020,63(6):409-420.
[32]Laloum T,Martín G,Duque P. Alternative splicing control of abiotic stress responses [J]. Trends in Plant Science,2018,23(2):140-150.
[33]Cui J W,Shen N,Lu Z G,et al. Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome [J]. Plant Methods,2020,16(1):85.
[34]Ivanov A G,Velitchkova M Y,Allakhverdiev S I,et al. Heat stress-induced effects of photosystem Ⅰ:an overview of structural and functional responses [J]. Photosynthesis Research,2017,133(1/2/3):17-30.
[35]Allakhverdiev S I,Kreslavski V D,Klimov V V,et al. Heat stress:an overview of molecular responses in photosynthesis [J]. Photosynthesis Research,2008,98(1/2/3):541-550.
[36]Shakeel S N,Aman S,Haq N U,et al. Proteomic and transcriptomic analyses of Agave americana in response to heat stress [J]. Plant Molecular Biology Reporter,2013,31(4):840-851.
[37]Li W M,Wei Z W,Qiao Z H,et al. Proteomics analysis of alfalfa response to heat stress [J]. PLoS One,2013,8(12):e82725.
[38]Spence A K,Boddu J,Wang D F,et al. Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus×giganteus[J]. Journal of Experimental Botany,2014,65(13):3737-3747.

相似文献/References:

[1]沙向红,严建萍.低温胁迫对幼苗期棉花根系ADHa与BADH表达的影响[J].江苏农业科学,2013,41(08):37.
 Sha Xianghong,et al.Effect of low temperature stress on expression of ADHa and BADH gene in root of cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(5):37.
[2]池文泽,周斌,盛玮,等.保水剂在棉花生产上的应用[J].江苏农业科学,2013,41(05):73.
 Chi Wenze,et al.Study on application of water retention agent in cotton production[J].Jiangsu Agricultural Sciences,2013,41(5):73.
[3]杨富强,杨长琴,刘瑞显,等.不同生育期渍水对棉花恢复生长及产量的影响[J].江苏农业科学,2014,42(12):108.
 Yang Fuqiang,et al.Effects of waterlogging in different growth stages on recovery growth and yield of cotton[J].Jiangsu Agricultural Sciences,2014,42(5):108.
[4]李玉侠,李家运,李长敏,等.江苏丰县棉花生产变化及植棉技术优化[J].江苏农业科学,2014,42(12):111.
 Li Yuxia,et al.Changes of cotton production and optimization of cotton planting technology in Fengxian County,Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(5):111.
[5]马晓梅,孙杰,李保成,等.新陆早51号棉花器官同伸关系及棉铃空间分布[J].江苏农业科学,2014,42(11):123.
 Ma Xiaomei,et al().Together growth of organs and cotton bolls spatial distribution of cotton cultivar “Xinluzao No.51”[J].Jiangsu Agricultural Sciences,2014,42(5):123.
[6]丁锦平.棉花病毒诱导基因沉默体系构建[J].江苏农业科学,2013,41(06):38.
 Ding Jinping.Establishment of virus induced gene silencing system in cotton[J].Jiangsu Agricultural Sciences,2013,41(5):38.
[7]王义霞,刘春生,苏彦华.新疆棉花品种新陆中51号在山东棉区的需钾特性[J].江苏农业科学,2014,42(10):80.
 Wang Yixia,et al.Potassium requirement characteristics of Xinjiang cotton cultivar “Xinluzhong No.51” in Shandong cotton region[J].Jiangsu Agricultural Sciences,2014,42(5):80.
[8]刘瑞显,张国伟,杨长琴,等.转变现代棉花生产技术研究理念的新视角——基于复杂性科学的思考[J].江苏农业科学,2014,42(10):1.
 Liu Ruixian,et al.A new perspective on ideological changes of cotton productive technological innovation-Based on reflections on complexity science[J].Jiangsu Agricultural Sciences,2014,42(5):1.
[9]陈向阳,陈丽萍,王思乐,等.粗糙集在棉花异性纤维图像去噪中的应用[J].江苏农业科学,2016,44(03):446.
 Chen Xiangyang,et al.Application of rough set in denoising of cotton fiber image[J].Jiangsu Agricultural Sciences,2016,44(5):446.
[10]姚琛,华春,周峰,等.盐碱滩涂植物资源筛选与利用[J].江苏农业科学,2013,41(10):357.
 Yao Chen,et al.Screening and utilization of plant resources cultivated on saline tidal flats[J].Jiangsu Agricultural Sciences,2013,41(5):357.

备注/Memo

备注/Memo:
收稿日期:2022-05-17
基金项目:国家自然科学基金(编号:32060149、31760316);海南省自然科学基金(编号:320RC500、321RC469)。
作者简介:丁宇(1996—),女,海南海口人,硕士研究生,主要从事转录组、基因组等生物信息学研究。E-mail:woshidingyuya@163.com。
通信作者:谢尚潜,博士,教授,主要从事生物信息学和基于三代测序的基因组学和转录组学研究。E-mail:sqianxie@foxmail.com。
更新日期/Last Update: 2023-03-05