|本期目录/Table of Contents|

[1]许芳芳,刘文祥,郑伟,等.茶树NF-Y基因家族鉴定及非生物胁迫下的表达分析[J].江苏农业科学,2023,51(5):81-93.
 Xu Fangfang,et al.Genome identification of Camellia sinensis NF-Y gene family and its expression analysis of abiotic stress[J].Jiangsu Agricultural Sciences,2023,51(5):81-93.
点击复制

茶树NF-Y基因家族鉴定及非生物胁迫下的表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第5期
页码:
81-93
栏目:
生物技术
出版日期:
2023-03-05

文章信息/Info

Title:
Genome identification of Camellia sinensis NF-Y gene family and its expression analysis of abiotic stress
作者:
许芳芳刘文祥郑伟孙耀清王辉
信阳农林学院林学院,河南信阳 464000
Author(s):
Xu Fangfanget al
关键词:
茶树NF-Y家族干旱胁迫全基因组分析基因表达
Keywords:
-
分类号:
S571.101
DOI:
-
文献标志码:
A
摘要:
NF-Y(nuclear factor-Y,NF-Y)通常是以NF-YA (CBF-B/HAP2)、NF-YB (CBF-A/HAP3)和NF-YC (CBF-C/HAP5) 3种亚基构成异源三聚体的形式调控下游基因的表达,并在生物与非生物胁迫耐受性等方面起着重要作用。本研究在茶树基因组中鉴定分类了茶树NF-Y基因家族成员,为后续的功能分析研究做准备。在研究中鉴定出45个NF-Y转录因子亚基(10个NF-YA,20个NF-YB,15个NF-YC)。染色体定位和同义分析表明,茶树NF-Y基因分布在14条染色体上,9对基因具有大片段复制,4对基因串联复制,片段复制是家族成员扩张的主要方式。通过序列分析,所有的NF-Y基因具有高度的结构保守性,大多数NF-Y基因有2个以上的内含子。通过启动子顺式元件分析发现,大部分基因含有激素和应激反应元件。转录组分析显示,一部分基因在干旱情况下出现不同程度的转录组丰度增加,而在盐处理后基本没有变化或出现不同程度的丰度下降。随后的qRT-PCR结果显示,在选定的4个基因中,CsNF-YA6、CsNF-YB4在20%PEG处理下出现不同幅度的上调,200 mmol/L 盐处理下,CsNF-YA6、CsNF-YB4、CsNF-YC5在盐处理后2 d出现轻微上调。结合qRT-PCR结果分析表明,在候选基因中存在介导茶树响应干旱胁迫与盐胁迫途径的基因。综上所述,茶树NF-Y基因在茶树非生物胁迫防御等多方面响应并发挥作用,本研究也为揭示相关NF-Y基因在茶树干旱胁迫与盐胁迫下的确切作用奠定了基础。
Abstract:
-

参考文献/References:

[1]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[2]Yamaguchi-Shinozaki K,Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology,2006,57:781-803.
[3]Wang J,Jin Z Y,Zhou M J,et al. Characterization of NF-Y transcription factor families in industrial rapeseed (Brassica napus L.) and identification of BnNF-YA3,which functions in the abiotic stress response[J]. Industrial Crops and Products,2020,148:112253.
[4]Siefers N,Dang K K,Kumimoto R W,et al. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity[J]. Plant Physiology,2008,149(2):625-641.
[5]Stephenson T J,McIntyre C L,Collet C,et al. Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum[J]. Plant Molecular Biology,2007,65(1/2):77-92.
[6]Liu R,Wu M,Liu H L,et al. Genome-wide identification and expression analysis of the NF-Y transcription factor family in Populus[J]. Physiologia Plantarum,2021,171(3):309-327.
[7]Ma X Y,Zhu X L,Li C L,et al. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2015,86:34-43.
[8]Li W X,Oono Y,Zhu J H,et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. The Plant Cell,2008,20(8):2238-2251.
[9]Lee D K,Kim H I,Jang G,et al. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner[J]. Plant Science,2015,241:199-210.
[10]Yang M Y,Zhao Y J,Shi S Y,et al. Wheat nuclear factor Y (NF-Y) B subfamily gene TaNF-YB3;l confers critical drought tolerance through modulation of the ABA-associated signaling pathway[J]. Plant Cell,Tissue and Organ Culture,2017,128(1):97-111.
[11]Hwang K,Susila H,Nasim Z,et al. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering[J]. Molecular Plant,2019,12(4):489-505.
[12]Chen C J,Chen H,Zhang Y,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[13]Zhang Z,Li J,Zhao X Q,et al. KaKs_Calculator:calculating Ka and Ks through model selection and model averaging[J]. Genomics,Proteomics & Bioinformatics,2006,4(4):259-263.
[14]王园园,赵春月,孙润润,等. 亚洲棉NF-YA基因家族的全基因组鉴定及表达分析[J]. 分子植物育种,2021,19(14):4564-4573.
[15]Pereira S L S,Martins C P S,Sousa A O,et al. Genome-wide characterization and expression analysis of citrus NUCLEAR FACTOR-Y (NF-Y) transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance[J]. PLoS One,2018,13(6):e0199187.
[16]Liang M X,Hole D,Wu J X,et al. Expression and functional analysis of NUCLEAR FACTOR-Y,subunit B genes in barley[J]. Planta,2012,235(4):779-791.
[17]Li M,Li G X,Liu W,et al. Genome-wide analysis of the NF-Y gene family in peach (Prunus persica L.)[J]. BMC Genomics,2019,20(1):612.
[18]Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y[J]. Gene,1999,239(1):15-27.
[19]Li S,Li K,Ju Z,et al. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening[J]. BMC Genomics,2016,17:36.
[20]Sémon M,Wolfe K H. Consequences of genome duplication[J]. Current Opinion in Genetics & Development,2007,17(6):505-512.
[21]Myers Z A,Holt B F Ⅲ. NUCLEAR FACTOR-Y:still complex after all these years?[J]. Current Opinion in Plant Biology,2018,45(PtA):96-102.
[22]Chaves-Sanjuan A,Gnesutta N,Gobbini A,et al. Structural determinants for NF-Y subunit organization and NF-Y/DNA association in plants[J]. The Plant Journal,2021,105(1):49-61.
[23]Hackenberg D,Keetman U,Grimm B. Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering[J]. International Journal of Molecular Sciences,2012,13(3):3458-3477.
[24]Li L L,Yu Y L,Wei J,et al. Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis[J]. Planta,2013,238(2):345-356.
[25]Parra G,Bradnam K,Rose A B,et al. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants[J]. Nucleic Acids Research,2011,39(13):5328-5337.
[26]Chen M,Zhao Y J,Zhuo C L,et al. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice[J]. Plant Biotechnology Journal,2015,13(4):482-491.
[27]Ni Z Y,Hu Z,Jiang Q Y,et al. GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress[J]. Plant Molecular Biology,2013,82(1/2):113-129.
[28]Nelson D E,Repetti P P,Adams T R,et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16450-16455.

相似文献/References:

[1]李金,魏艳丽,庞磊,等.茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J].江苏农业科学,2013,41(10):21.
 Li Jin,et al.Differences in expression of TCS1、TIDH and SAMS genes in caffeine synthetic route of Camellia Sinensis and their correlation with caffeine contents[J].Jiangsu Agricultural Sciences,2013,41(5):21.
[2]朱韦京,余树全,汪赛,等.不同酸雨作用方式对茶树幼苗生长与光合特征参数的影响[J].江苏农业科学,2014,42(10):232.
 Zhu Weijing,et al.Effects of different acid rain action modes on growth and photosynthetic parameters of Camellia sinensis seedlings[J].Jiangsu Agricultural Sciences,2014,42(5):232.
[3]李荣林,李珍珍,杨亦扬,等.以诱导抗性为基础的茶树病虫害控制新技术[J].江苏农业科学,2013,41(11):145.
 Li Ronglin,et al.New diseases and insect pests control techniques for tea tree based on induced resistance[J].Jiangsu Agricultural Sciences,2013,41(5):145.
[4]王雪萍,龚自明,高士伟,等.ABT1号生根粉对茶树穴盘扦插生根的影响[J].江苏农业科学,2013,41(11):277.
 Wang Xueping,et al.Effect of rooting powder ABT1 on rooting of tea tree plug seedlings[J].Jiangsu Agricultural Sciences,2013,41(5):277.
[5]周萌,李友勇,孙雪梅,等.基于EST-SSR标记的云南野生茶树遗传多样性分析[J].江苏农业科学,2013,41(12):22.
 Zhou Meng,et al.Genetic diversity analysis of wild tea trees in Yunnan Province based on EST-SSR markers[J].Jiangsu Agricultural Sciences,2013,41(5):22.
[6]杨亦扬,胡雲飞,李荣林,等.不同茶树品种的碧螺春茶适制性[J].江苏农业科学,2015,43(09):219.
 Yang Yiyang,et al.Study on processing suitability of Biluochun tea from different tea plant varieties[J].Jiangsu Agricultural Sciences,2015,43(5):219.
[7]胡雲飞,杨亦扬,李荣林,等.不同时段喷施叶面肥对春茶新梢生长与品质的影响[J].江苏农业科学,2015,43(07):170.
 Hu Yunfei,et al.Effects of sparying foliage fertilizer at different times on growth and quality of fresh tea new shoots[J].Jiangsu Agricultural Sciences,2015,43(5):170.
[8]李荣林,杨亦扬,胡雲飞,等.茶树的抗虫性和抗性育种研究[J].江苏农业科学,2015,43(05):1.
 Li Rongling,et al.Study on insect resistance and stress-resistance breeding of tea plant[J].Jiangsu Agricultural Sciences,2015,43(5):1.
[9]王海斌,叶江华,孔祥海,等.铜胁迫下不同茶树的生理响应及亚细胞水平铜分布特性[J].江苏农业科学,2016,44(11):219.
 Wang Haibin,et al.Physiological response and copper distribution characteristics in subcellular level of different tea tree under copper stress[J].Jiangsu Agricultural Sciences,2016,44(5):219.
[10]田甜,韦锦坚,陈远权,等.茶树的铝、硒、钙营养及互作研究综述[J].江苏农业科学,2016,44(12):29.
 Tian Tian,et al.On nutrition and interaction of aluminum, selenium and calcium in tea plant:a review[J].Jiangsu Agricultural Sciences,2016,44(5):29.

备注/Memo

备注/Memo:
收稿日期:2022-08-04
基金项目:河南省林草局科技兴林项目(编号:YLK202138);河南省科技攻关项目(编号:212102110186);信阳农林学院青年基金(编号:QN2021013、QN2021016)。
作者简介:许芳芳(1993—),女,河南驻马店人,硕士,助教,主要从事植物抗逆胁迫及生态保护研究。E-mail:906792515@qq.com。
通信作者:王辉,硕士,副教授,从事植物造景与养护研究与教学。E-mail:13733159426@163.com。
更新日期/Last Update: 2023-03-05