|本期目录/Table of Contents|

[1]李晓静,李圣龙,岳亮亮.石榴TCP基因家族的生物信息学与表达分析[J].江苏农业科学,2024,52(1):41-48.
 Li Xiaojing,et al.Bioinformatics and expression analysis of TCP gene family in Punica granatum L.[J].Jiangsu Agricultural Sciences,2024,52(1):41-48.
点击复制

石榴TCP基因家族的生物信息学与表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第1期
页码:
41-48
栏目:
生物技术
出版日期:
2024-01-05

文章信息/Info

Title:
Bioinformatics and expression analysis of TCP gene family in Punica granatum L.
作者:
李晓静1李圣龙1岳亮亮2
1.红河学院生物科学与农学学院/云南省高校滇南特色生物资源研究与利用重点实验室,云南蒙自 661100;2.西南林业大学高原湿地中心,云南昆明 650224
Author(s):
Li Xiaojinget al
关键词:
石榴TCP转录因子基因家族分析基因表达生物信息学
Keywords:
-
分类号:
S665.401
DOI:
-
文献标志码:
A
摘要:
TCP是植物特有转录因子家族之一,参与植物的叶发育、花发育、分枝发育、芽的休眠、果实的成熟及花色苷的生物合成等生长发育过程。本研究以石榴基因组数据和转录组数据为材料,分析了石榴TCP基因家族成员的理化性质、系统进化关系、保守结构域、基因结构和表达情况。结果表明,石榴基因组有22个TCP基因,TCP蛋白氨基酸长度在221~644 aa之间,蛋白分子量为23.23~70.76 ku。石榴TCP基因可分为ClassⅠ(PCF)和ClassⅡ(CYC/TB1和CIN)两大类。大多数PgTCP基因无内含子。CIN亚族成员PgTCP1、PgTCP3、PgTCP4、PgTCP5含有miR319调控位点。PgTCP1和PgTCP3在叶片中表达量高,PgTCP1和PgTCP14在花中表达量高。PgTCP22在果皮发育中表达量降低,PgTCP2和PgTCP5在外种皮发育中表达量降低。该研究结果可为石榴TCP家族基因功能研究,探索TCP调控石榴果实发育及品质形成提供参考,为石榴的分子育种提供科学依据。
Abstract:
-

参考文献/References:

[1]Wang Q J,Xu G X,Zhao X H,et al. Transcription factor TCP20 regulates peach bud endodormancy by inhibiting DAM5/DAM6 and interacting with ABF2[J]. Journal of Experimental Botany,2020,71(4):1585-1597.
[2]Kieffer M,Master V,Waites R,et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis[J]. The Plant Journal,2011,68(1):147-158.
[3]Hur Y S,Kim J,Kim S,et al. Identification of TCP13 as an upstream regulator of ATHB12 during leaf development[J]. Genes,2019,10(9):644.
[4]Wang Y,Yu Y H,Wang J D,et al. Heterologous overexpression of the GbTCP5 gene increased root hair length,root hair and stem trichome density,and lignin content in transgenic Arabidopsis[J]. Gene,2020,758:144954.
[5]Davière J M,Wild M,Regnault T,et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Current Biology,2014,24(16):1923-1928.
[6]An J P,Liu Y J,Zhang X W,et al. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple[J]. Journal of Experimental Botany,2020,71(10):3094-3109.
[7]Xie Y G,Ma Y Y,Bi P P,et al. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins[J]. Plant Physiology and Biochemistry,2020,146:374-383.
[8]Wei W,Hu Y,Cui M Y,et al. Identification and transcript analysis of the TCP transcription factors in the diploid woodland strawberry Fragaria vesca[J]. Frontiers in Plant Science,2016,7:1937.
[9]Jiu S T,Xu Y,Wang J Y,et al. Genome-wide identification,characterization,and transcript analysis of the TCP transcription factors in Vitis vinifera[J]. Frontiers in Genetics,2019,10:1276.
[10]Leng X,Wei H,Xu X,et al. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine[J]. BMC Genomics,2019,20:786.
[11]Zheng A Q,Sun F L,Cheng T T,et al. Genome-wide identification of members of the TCP gene family in switchgrass (Panicum virgatum L.) and analysis of their expression[J]. Gene,2019,702:89-98.
[12]李圣龙,王传铭,李晓静.石榴NAC转录因子家族的生物信息学分析[J]. 分子植物育种,2021,19(1):88-99.
[13]Chen C J,Chen H,Zhang Y,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[14]Qin G H,Xu C Y,Ming R,et al. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis[J]. Plant Journal,2017,91(6):1108-1128.
[15]Danisman S,van Dijk A D J,Bimbo A,et al. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family[J]. Journal of Experimental Botany,2013,64(18):5673-5685.
[16]Wang S T,Sun X L,Hoshino Y,et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.)[J]. PLoS One,2014,9(3):e91357.
[17]Shi P B,Guy K M,Wu W F,et al. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus[J]. BMC Plant Biology,2016,16:85.
[18]Violeta P,Marco B,Jacqueline B L,et al. Identification,cloning and characterization of the tomato TCP transcription factor family[J]. BMC Plant Biology,2014,14(1):157.
[19]Yin Z,Li Y,Zhu W,et al. Identification,characterization,and expression patterns of TCP genes and microRNA319 in cotton[J]. International Journal of Molecular Sciences,2018,19(11):3655.
[20]Wang H F,Wang H W,Liu R,et al. Genome-wide identification of TCP family transcription factors in Medicago truncatula reveals significant roles of miR319-targeted TCPs in nodule development[J]. Frontiers in Plant Science,2018,9:774.
[21]Zheng X Y,Yang J J,Lou T X,et al. Transcriptome profile analysis reveals that CsTCP14 induces susceptibility to foliage diseases in cucumber[J]. International Journal of Molecular Sciences,2019,20(10):2582.
[22]Velasco R,Zharkikh A,Affourtit J,et al. The genome of the domesticated apple (Malus×domestica Borkh.)[J]. Nature Genetics,2010,42(10):833-839.
[23]Consortium T G.The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature,2012,485(7400):635-641.
[24]Xu R R,Sun P,Jia F J,et al. Genomewide analysis of TCP transcription factor gene family in Malus domestica[J]. Journal of Genetics,2014,93(3):733-746.
[25]Tang C,Xie Y M,Guo M,et al. AASRA:an anchor alignment-based small RNA annotation pipeline[J]. Biology of Reproduction,2021,105(1):267-277.
[26]Liu Y,Guan X Y,Liu S N,et al. Genome-wide identification and analysis of TCP transcription factors involved in the formation of leafy head in Chinese cabbage[J]. International Journal of Molecular Sciences,2018,19(3):847.
[27]Rubio-Somoza I,Zhou C M,Confraria A,et al. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes[J]. Current Biology,2014,24(22):2714-2719.
[28]Xu Y M,Xiao X M,Zeng Z X,et al. BrTCP7 transcription factor is associated with MeJA-promoted leaf senescence by activating the expression of BrOPR3 and BrRCCR[J]. International Journal of Molecular Sciences,2019,20(16):3963.
[29]Koyama T,Nii H,Mitsuda N,et al. A regulatory cascade involving class ii ethylene response factor transcriptional repressors operates in the progression of leaf senescence[J]. Plant Physiology,2013,162(2):991-1005.
[30]Koyama T,Sato F,Ohme-Takagi M.Roles of miR319 and TCP transcription factors in leaf development[J]. Plant Physiology,2017,175(2):874-885.
[31]Schommer C,Palatnik J F,Aggarwal P,et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology,2008,6(9):e230.
[32]Palatnik J F,Allen E,Wu X L,et al. Control of leaf morphogenesis by microRNAs[J]. Nature,2003,425(6995):257-263.
[33]Guo Z H,Shu W S,Cheng H Y,et al. Expression analysis of TCP genes in peach reveals an involvement of PpTCP.A2 in ethylene biosynthesis during fruit ripening[J]. Plant Molecular Biology Reporter,2018,36(4):588-595.

相似文献/References:

[1]陶吉寒,招雪晴,苑兆和,等.石榴DFR基因的同源克隆及分析[J].江苏农业科学,2013,41(04):22.
[2]郭文琦,张培通,李春宏,等.沿海滩涂绿化树种选择和耐盐性评价[J].江苏农业科学,2014,42(10):175.
 Guo Wenqi,et al.Selection and evaluation on salt tolerance of gardening tree species in coastal beach areas[J].Jiangsu Agricultural Sciences,2014,42(1):175.
[3]陈成,汪洪涛.山楂石榴复合果酒发酵工艺的研究[J].江苏农业科学,2013,41(07):248.
 Chen Cheng,et al.Study on fermentation technology of hawthorn and pomegranate compound fruit wine[J].Jiangsu Agricultural Sciences,2013,41(1):248.
[4]邓志勇,吴桂容,杨程显.脐橙-石榴复合果酒酿造工艺的研究[J].江苏农业科学,2015,43(02):266.
 Deng Zhiyong,et al.Study on brewing technology of compound wine of navel orange and pomegranate[J].Jiangsu Agricultural Sciences,2015,43(1):266.
[5]范春丽,罗青.干旱胁迫下外源甜菜碱对石榴光合作用、渗透调节及保护酶活性的影响[J].江苏农业科学,2016,44(11):229.
 Fan Chunli,et al.Effects of exogenous glycinebetaine on photosynthesis,osmotic adjustment ability and protective enzyme activity of Punica granatum under drought stress[J].Jiangsu Agricultural Sciences,2016,44(1):229.
[6]冯立娟,焦其庆,尹燕雷,等.石榴果皮DHQ/SDH基因的克隆及序列分析[J].江苏农业科学,2017,45(01):26.
 Feng Lijuan,et al.Cloning and sequence analysis of DHQ/SDH gene in pomegranate peel[J].Jiangsu Agricultural Sciences,2017,45(1):26.
[7]鲁海菊,李河,史淑義,等.云南省石榴干腐病病菌生物学特性及其防治药剂筛选[J].江苏农业科学,2017,45(01):99.
 Lu Haiju,et al.Study on biological characteristics of pathogen of pomegranate dry rot from Yunnan Province and its control fungicides[J].Jiangsu Agricultural Sciences,2017,45(1):99.
[8]曹尚银,牛娟,张杰,等.2种蛋白质组学方法在石榴中的应用比较[J].江苏农业科学,2017,45(20):68.
 Cao Shangyin,et al.A comparative study on application of two proteomics methods in pomegranate[J].Jiangsu Agricultural Sciences,2017,45(1):68.
[9]周银丽,郭建伟,杨伟,等.间作桃树对石榴园枯萎病土壤碳代谢多样性的影响[J].江苏农业科学,2018,46(14):106.
 Zhou Yinli,et al.Influences of intercropping peach trees on fusarium wilt soil carbon metabolism diversity in pomegranate garden[J].Jiangsu Agricultural Sciences,2018,46(1):106.
[10]王硕,李德生,朱秀锦,等.石榴对镉、铅、锌复合污染土壤的修复效果[J].江苏农业科学,2019,47(02):250.
 Wang Shuo,et al.Remediation effect of pomegranate on Cd,Pb and Zn combined pollution soil[J].Jiangsu Agricultural Sciences,2019,47(1):250.

备注/Memo

备注/Memo:
收稿日期:2023-02-20
基金项目:国家自然科学地区基金(编号:42161015);云南省教育厅科学研究基金(编号:2023J1115)。
作者简介:李晓静(1986—),女,河南洛阳人,博士,讲师,主要从事果树栽培学方面的教学与研究。E-mail:lanmeixj@163.com。
通信作者:岳亮亮,博士,助理研究员,主要从事植物学、生物地理学、湿地学、分子生态学方面的教学与研究。E-mail:yueliangliang@swfu.edu.cn。
更新日期/Last Update: 2024-01-05