|本期目录/Table of Contents|

[1]刘丽丽,陈银霞,聂蔚丹,等.LRR-RLKs参与番茄抗根结线虫病途径中的功能分析与验证[J].江苏农业科学,2024,52(4):63-71.
 Liu Lili,et al.Functional analysis and verification of LRR RLKs in tomato defense against root-knot nematode[J].Jiangsu Agricultural Sciences,2024,52(4):63-71.
点击复制

LRR-RLKs参与番茄抗根结线虫病途径中的功能分析与验证(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第4期
页码:
63-71
栏目:
生物技术
出版日期:
2024-02-20

文章信息/Info

Title:
Functional analysis and verification of LRR RLKs in tomato defense against root-knot nematode
作者:
刘丽丽陈银霞聂蔚丹冯成蒿王超楠杨中敏杜崇
新疆农业大学园艺学院,新疆乌鲁木齐830052
Author(s):
Liu Liliet al
关键词:
LRR-RLK番茄抗病根结线虫VIGS
Keywords:
-
分类号:
S436.412
DOI:
-
文献标志码:
A
摘要:
前期以对南方根结线虫(Meloidogyne incognita)具有热稳定抗性的野生秘鲁番茄LA3858(Mi-3/Mi-3)为试材,采用不同土壤温度处理形成抗感态,进行转录组测序(RNA-seq)。本研究以该测序数据为依托,筛选出8个编码LRR-RLKs的差异表达基因(DEGs)并进行相关分析与功能验证。结果表明,目标LRR-RLKs基因分布在番茄的1号、2号、3号、5号、7号和8号染色体上,编码蛋白均被定位于细胞膜上;在目标LRR-RLKs中,只有编码Solyc07g0558103的氨基酸是碱性氨基酸;组织特异性表达分析发现,Solyc05g056370.3在栽培番茄Heinz1706根部较其他基因高水平表达,并且接种线虫后,该基因在LA3858抗病材料根部响应迅速,24 h内积累水平明显高于其他基因;同时,系统进化树分析发现,Solyc05g056370.3所在分组大部分蛋白与油菜素类信号传导、细胞死亡控制、发病机制等免疫防卫进程相关;进一步VIGS功能验证揭示,Solyc05g056370.3正向调控番茄对根结线虫的抗性。综上,Solyc05g056370.3参与番茄介导抗病并正反馈响应防卫进程,是很有价值的抗性改良资源,因此,该基因的深入挖掘对后续番茄抗根结线虫病新材料的选育具有理论指导意义。
Abstract:
-

参考文献/References:

[1]Zhu Q F,Feng Y Z,Xue J,et al. Advances in receptor-like protein kinases in balancing plant growth and stress responses[J]. Plants,2023,12(3):427.
[2]Man J,Harrington T,Lally K,et al. Asymmetric evolution of protein domains in the leucine-rich repeat receptor-like kinase (LRR-RLK) family of plant developmental coordinators[J/OL]. bioRxiv,2023(2023-03-13)[2023-05-28]. https://doi.org/10.1101/2023.03.13.532436.
[3]Chen T S.I dentification and characterization of the LRR repeats in plant LRR-RLKs[J]. BMC Molecular and Cell Biology,2021,22(1):9.
[4]Walker J C. Structure and function of the receptor-like protein kinases of higher plants[J]. Plant Molecular Biology,1994,26(5):1599-1609.
[5]Peng H C,Kaloshian I. The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity[J]. PLoS One,2014,9(3):e93302.
[6]Chaparro-Garcia A,Wilkinson R C,Gimenez-Ibanez S,et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana[J]. PLoS One,2011,6(1):e16608.
[7]Hu H,Xiong L,Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta,2005,222(1):107-117.
[8]Shi Y F,Bao X Y,Song X P,et al. The leucine-rich repeat receptor-like kinase protein TaSERK1 positively regulates high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici by interacting with TaDJA7[J]. Phytopathology,2023,113(7):1325-1334.
[9]Karssen G,Van Aelst A. Root-knot nematode perineal pattern development:a reconsideration[J]. Nematology,2001,3(2):95-111.
[10]Aydnl G,Kurtar E S,Mennan S. Screening of Cucurbita maxima and Cucurbita moschata genotypes for resistance against Meloidogyne arenaria,M. incognita,M. javanica,and M. luci[J]. Journal of Nematology,2019,51(1):1-10.
[11]马少军,刘佳伟,金玉华,等. 兵团第十四师四十七团设施蔬菜根结线虫种类鉴定[J]. 新疆农垦科技,2022,45(4):37-39.
[12]Du C,Jiang J B,Zhang H,et al. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita[J]. BMC Genomics,2020,21(1):250.
[13]Kppel R,Bucher T B. Duplex real-time PCR for the determination of wasabi (Eutrema wasabi) contents in horseradish (Armoracia rusticana) products applying the ΔΔCT-method[J]. European Food Research and Technology,2016,242(7):1111-1115.
[14]Taylor A L,Sasser J N.Biology,identification and control of root-knot nematodes (Meloidogyne spp.)[J/OL]. [2023-05-28]. https://www.researchgate.net/publication/303264394_Biology_Identification_and_control_of_Root-knot_Nematodes_Meloidogyne_spp.
[15]Mutz K O,Heilkenbrinker A,Lnne M,et al. Transcriptome analysis using next-generation sequencing[J]. Current Opinion in Biotechnology,2013,24(1):22-30.
[16]Banach M,Konieczny L,Roterman I.Secondary and supersecondary structure of proteins in light of the structure of hydrophobic cores[J]. Methods in Molecular Biology,2019,1958:347-378.
[17]Schwede T,Kopp J,Guex N,et al. SWISS-MODEL:an automated protein homology-modeling server[J]. Nucleic Acids Research,2003,31(13):3381-3385.
[18]Clouse S D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development[J]. Plant Journal,2010,10:1-8.
[19]Li B,Ferreira M A,Huang M L,et al. The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity[J]. Nature Communications,2019,10:4996.
[20]Takeuchi H,Higashiyama T. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis[J]. Nature,2016,531(7593):245-248.
[21]Sakamoto T,Deguchi M,Brustolini O J B,et al. The tomato RLK superfamily:phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense[J]. BMC Plant Biology,2012,12:229.
[22]Brustolini O J B,Silva J C F,Sakamoto T,et al. Bioinformatics analysis of the receptor-like kinase (RLK) superfamily[J]. Methods in Molecular Biology,2017,1578:123-132.
[23]魏志蓉. 番茄(亨氏1706)富含亮氨酸重复序列类受体蛋白激酶基因家族生物信息学与表达分析[D]. 天津:天津大学,2016:56-78.
[24]王亚南,孟涛,徐凡,等. GmSARK⊿LRR过表达拟南芥衰老相关的表型分析与分子鉴定[J]. 南开大学学报(自然科学版),2021,54(5):82-87.
[25]Wu W Z,Wu Y J,Gao Y,et al. Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control[J]. Frontiers in Plant Science,2015,6:852.
[26]Alvy R I,Mubassir M H M. Effect of D128N mutation on OsSERK2 in Xa21 mediated immune complex:an in-silico study[J/OL]. bioRxiv,2022(2022-11-30)[2023-05-28]. https://doi.org/10.1101/2022.11.30.518629.
[27]Upadhyay S K. Calcium channels,OST1 and stomatal defence:current status and beyond[J]. Cells,2022,12(1):127.
[28]Tian W,Hou C C,Ren Z J,et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity[J]. Nature,2019,572(7767):131-135.
[29]Zafari S,Vanlerberghe G C,Igamberdiev A U. The role of alternative oxidase in the interplay between nitric oxide,reactive oxygen species,and ethylene in tobacco (Nicotiana tabacum L.) plants incubated under normoxic and hypoxic conditions[J]. International Journal of Molecular Sciences,2022,23(13):7153.
[30]Wang J,Nan N,Shi L L,et al. Arabidopsis BRCA1 represses RRTF1-mediated ROS production and ROS-responsive gene expression under dehydration stress[J]. New Phytologist,2020,228(5):1591-1610.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(4):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(4):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(4):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(4):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(4):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
 Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(4):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(4):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(4):259.

备注/Memo

备注/Memo:
收稿日期:2023-05-28
基金项目:新疆维吾尔自治区自然科学基金青年基金(编号:2022D01B95);2020年新疆维吾尔自治区“天池博士计划”项目(编号:390000017);新疆维吾尔自治区重点研发计划子课题(编号:2022B02032-2)。
作者简介:刘丽丽(1998—),女,河南周口人,硕士研究生,研究方向为番茄分子遗传育种。E-mail:206346559@qq.com。
通信作者:杜崇,博士,硕士生导师,主要从事番茄分子遗传育种研究。E-mail:godv2018@163.com。
更新日期/Last Update: 2024-03-20