[1]中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社, 1993:18.
[2]潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报,2015,41(2):175-186.
[3]Houle D,Govindaraju D R,Omholt S.Phenomics:the next challenge[J]. Nature Reviews Genetics,2010,11(12):855-866.
[4]Scharr H,Dee H,French A P,et al. Special issue on computer vision and image analysis in plant phenotyping[J]. Machine Vision and Applications,2016,27(5):607-609.
[5]李帼,曹苏艳,钱婷婷,等. 基于改进GrabCut算法的黄瓜植株图像分割[J]. 中国农机化学报,2021,42(3):159-165.
[6]翟瑞芳,方益杭,林承达,等. 基于高斯HI颜色算法的大田油菜图像分割[J]. 农业工程学报,2016,32(8):142-147.
[7]孙国祥,汪小旵,闫婷婷,等. 基于机器视觉的植物群体生长参数反演方法[J]. 农业工程学报,2014,30(20):187-195.
[8]孙哲,张春龙,葛鲁镇,等. 基于Faster R-CNN的田间西兰花幼苗图像检测方法[J]. 农业机械学报,2019,50(7):216-221.
[9]王晓东,樊江川,杜建军,等. 基于U-net语义分割模型的田间玉米冠层图像分割[J]. 江苏科技大学学报(自然科学版),2021,35(2):59-67.
[10]王璨,武新慧,李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报,2018,34(5):144-151.
[11]Kang H W,Chen C. Fruit detection,segmentation and 3D visualisation of environments in apple orchards[J]. Computers and Electronics in Agriculture,2020,171:105302.
[12]Aksoy E E,Abramov A,Wrgtter F,et al. Modeling leaf growth of rosette plants using infrared stereo image sequences[J]. Computers and Electronics in Agriculture,2015,110:78-90.
[13]Fanourakis D,Briese C,Max J F,et al. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture[J]. Plant Methods,2014,10(1):9.
[14]Wouters N,Ketelaere B,Baerdemaeker J,et al. Hyperspectral waveband selection for automatic detection of floral pear buds[J]. Precision Agriculture,2013,14(1):86-98.
[15]Wouters N,de Ketelaere B,Deckers T,et al. Multispectral detection of floral buds for automated thinning of pear[J]. Computers and Electronics in Agriculture,2015,113:93-103.
[16]Overview of surveillance camera and color black-and-white conversion[EB/OL]. (2012-07-25)[2022-01-10]. http://m.eepw.com.cn/m/display/id/160266.
[17]Vera F,Rivera R,Ortíz M. A simple experiment to measure the inverse square law of light in daylight conditions[J]. European Journal of Physics,2014,35(1):15.
[18]Mortensen E N,Barrett W A. Interactive segmentation with intelligent scissors[J]. Graphical Models and Image Processing,1998,60(5):349-384.
[19]Mortensen E N,Barrett W A. Intelligent scissors for image composition[C]//SIGGRAPH 95:Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,1995:191-198.
[20]Ekstrom M. Digital image processing[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1980,28(4):484-486.
[21]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[22]Suzuki S,Be K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision,Graphics,and Image Processing,1985,30(1):32-46.
[23]Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik,1959,1(1):269-271.
[24]Garcia-Garcia A,Orts-Escolano S,Oprea S,et al. A review on deep learning techniques applied to semantic segmentation[C]//ArXiv:Computer Vision and Pattern Recognition,2017.
[25]Kennedy J,Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.Perth,1995:1942-1948.
[26]Jin S C,Su Y J,Zhang Y G,et al. Exploring seasonal and circadian rhythms in structural traits of field maize from LiDAR time series[J]. Plant Phenomics,2021,2021:9895241.
[1]孙杨,孙玉刚,魏国芹.不同樱桃品种对褐斑病田间抗病性的调查[J].江苏农业科学,2014,42(10):129.
Sun Yang,et al.Investigation on brown speckle disease resistance of different varieties of cherries in field[J].Jiangsu Agricultural Sciences,2014,42(1):129.
[2]朱家骥,朱伟兴.基于星状骨架模型的猪步态分析[J].江苏农业科学,2015,43(12):453.
Zhu Jiaji,et al.Analysis of pigs gaits based on star shaped frame model[J].Jiangsu Agricultural Sciences,2015,43(1):453.
[3]陈桂珍,龚声蓉.计算机视觉及模式识别技术在农业生产领域的应用[J].江苏农业科学,2015,43(08):409.
Chen Guizhen,et al.Application of computer vision and pattern recognition in agricultural production field[J].Jiangsu Agricultural Sciences,2015,43(1):409.
[4]劳东青,陈立平,邬欢欢,等.基于计算机视觉的枣叶含水率估算模型[J].江苏农业科学,2015,43(04):384.
Lao Dongqing,et al.Study on jujube leaf water content estimation model based on computer vision[J].Jiangsu Agricultural Sciences,2015,43(1):384.
[5]王爱新,李春友,张喆.基于计算机视觉的农业图像害虫定位检测算法[J].江苏农业科学,2016,44(07):361.
Wang Aixin,et al.Agricultural image pest location detection algorithm based on computer vision[J].Jiangsu Agricultural Sciences,2016,44(1):361.
[6]祁卫宇,王传宇,郭新宇.基于计算机视觉的植物行为感知研究综述[J].江苏农业科学,2017,45(06):20.
Qi Weiyu,et al.Study on plant behavior perception based on computer vision: a review[J].Jiangsu Agricultural Sciences,2017,45(1):20.
[7]邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160.
Xing Zhizhong,et al.Detection of egg freshness based on computer vision detection and neural network[J].Jiangsu Agricultural Sciences,2017,45(1):160.
[8]宋常美,文晓鹏,李庆宏.红枫湖樱桃花粉超低温保存探究[J].江苏农业科学,2018,46(05):117.
Song Changmei,et al.Study on pollen cryopreservation of cherry “Hongfenghu”[J].Jiangsu Agricultural Sciences,2018,46(1):117.
[9]陈彩文,杜永贵,周超,等.基于支持向量机的鱼群摄食行为识别技术[J].江苏农业科学,2018,46(07):226.
Chen Caiwen,et al.Study on fish feeding behavior recognition technology based on support vector machine[J].Jiangsu Agricultural Sciences,2018,46(1):226.
[10]刘祖鹏.基于优化PCNN模型的黄瓜叶片病斑提取方法[J].江苏农业科学,2018,46(18):216.
Liu Zupeng.A cucumber leaf lesion extraction method based on optimized PCNN mode[J].Jiangsu Agricultural Sciences,2018,46(1):216.