|本期目录/Table of Contents|

[1]胡玲艳,许巍,秦山,等.基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法[J].江苏农业科学,2023,51(1):195-202.
 Hu Lingyan??et al.Image segmentation of key feature regions of European sweet cherry phenotype based on time-sharing overlap algorithm[J].Jiangsu Agricultural Sciences,2023,51(1):195-202.
点击复制

基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第1期
页码:
195-202
栏目:
农业工程与信息技术
出版日期:
2023-01-05

文章信息/Info

Title:
Image segmentation of key feature regions of European sweet cherry phenotype based on time-sharing overlap algorithm
作者:
胡玲艳1许巍1秦山2裴悦琨1汪祖民1
1.大连大学信息工程学院,辽宁大连 116000; 2.大连市现代农业生产发展服务中心,辽宁大连 116000
Author(s):
Hu Lingyan??et al
关键词:
樱桃计算机视觉植物表型智慧农业分时重叠分割算法
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
获取与描述植物表型是植物学与农学研究的一个核心命题,大规模植物表型试验在作物优良品种选育与栽培技术研究中发挥了重要作用。其中,计算机视觉相关技术正日益成为自动化获取植物表型数据的关键方法。基于计算机视觉,提出分时重叠分割算法,并运用该算法从樱桃图像中分割出表型关键特征区域图像。算法从普通监控摄像头特性出发,分时获取同一角度樱桃作物本体的日间彩色图像与夜间红外灯补光灰度图像;将灰度图像进行阈值处理与形态学滤波,提取初始区域轮廓;以此作为前置条件,自适应地寻找日间彩色图像中的关键特征区域边缘路径。同时,采用粒子群算法获取特定图像的最优参数,将参数运用于同一角度的时间序列樱桃图像中。结果表明,算法自动分割关键特征区域平均IoU为0.849 7,达到需要人工参与的交互式算法相近水平。该方法实现成本低、分割精度高、适用性强,可自主实现樱桃图像表型关键特征区域的切割与获取,并可大面积运用于农业生产环境中。
Abstract:
-

参考文献/References:

[1]中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社, 1993:18.
[2]潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报,2015,41(2):175-186.
[3]Houle D,Govindaraju D R,Omholt S.Phenomics:the next challenge[J]. Nature Reviews Genetics,2010,11(12):855-866.
[4]Scharr H,Dee H,French A P,et al. Special issue on computer vision and image analysis in plant phenotyping[J]. Machine Vision and Applications,2016,27(5):607-609.
[5]李帼,曹苏艳,钱婷婷,等. 基于改进GrabCut算法的黄瓜植株图像分割[J]. 中国农机化学报,2021,42(3):159-165.
[6]翟瑞芳,方益杭,林承达,等. 基于高斯HI颜色算法的大田油菜图像分割[J]. 农业工程学报,2016,32(8):142-147.
[7]孙国祥,汪小旵,闫婷婷,等. 基于机器视觉的植物群体生长参数反演方法[J]. 农业工程学报,2014,30(20):187-195.
[8]孙哲,张春龙,葛鲁镇,等. 基于Faster R-CNN的田间西兰花幼苗图像检测方法[J]. 农业机械学报,2019,50(7):216-221.
[9]王晓东,樊江川,杜建军,等. 基于U-net语义分割模型的田间玉米冠层图像分割[J]. 江苏科技大学学报(自然科学版),2021,35(2):59-67.
[10]王璨,武新慧,李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报,2018,34(5):144-151.
[11]Kang H W,Chen C. Fruit detection,segmentation and 3D visualisation of environments in apple orchards[J]. Computers and Electronics in Agriculture,2020,171:105302.
[12]Aksoy E E,Abramov A,Wrgtter F,et al. Modeling leaf growth of rosette plants using infrared stereo image sequences[J]. Computers and Electronics in Agriculture,2015,110:78-90.
[13]Fanourakis D,Briese C,Max J F,et al. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture[J]. Plant Methods,2014,10(1):9.
[14]Wouters N,Ketelaere B,Baerdemaeker J,et al. Hyperspectral waveband selection for automatic detection of floral pear buds[J]. Precision Agriculture,2013,14(1):86-98.
[15]Wouters N,de Ketelaere B,Deckers T,et al. Multispectral detection of floral buds for automated thinning of pear[J]. Computers and Electronics in Agriculture,2015,113:93-103.
[16]Overview of surveillance camera and color black-and-white conversion[EB/OL]. (2012-07-25)[2022-01-10]. http://m.eepw.com.cn/m/display/id/160266.
[17]Vera F,Rivera R,Ortíz M. A simple experiment to measure the inverse square law of light in daylight conditions[J]. European Journal of Physics,2014,35(1):15.
[18]Mortensen E N,Barrett W A. Interactive segmentation with intelligent scissors[J]. Graphical Models and Image Processing,1998,60(5):349-384.
[19]Mortensen E N,Barrett W A. Intelligent scissors for image composition[C]//SIGGRAPH 95:Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,1995:191-198.
[20]Ekstrom M. Digital image processing[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1980,28(4):484-486.
[21]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[22]Suzuki S,Be K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision,Graphics,and Image Processing,1985,30(1):32-46.
[23]Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik,1959,1(1):269-271.
[24]Garcia-Garcia A,Orts-Escolano S,Oprea S,et al. A review on deep learning techniques applied to semantic segmentation[C]//ArXiv:Computer Vision and Pattern Recognition,2017.
[25]Kennedy J,Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.Perth,1995:1942-1948.
[26]Jin S C,Su Y J,Zhang Y G,et al. Exploring seasonal and circadian rhythms in structural traits of field maize from LiDAR time series[J]. Plant Phenomics,2021,2021:9895241.

相似文献/References:

[1]孙杨,孙玉刚,魏国芹.不同樱桃品种对褐斑病田间抗病性的调查[J].江苏农业科学,2014,42(10):129.
 Sun Yang,et al.Investigation on brown speckle disease resistance of different varieties of cherries in field[J].Jiangsu Agricultural Sciences,2014,42(1):129.
[2]朱家骥,朱伟兴.基于星状骨架模型的猪步态分析[J].江苏农业科学,2015,43(12):453.
 Zhu Jiaji,et al.Analysis of pigs gaits based on star shaped frame model[J].Jiangsu Agricultural Sciences,2015,43(1):453.
[3]陈桂珍,龚声蓉.计算机视觉及模式识别技术在农业生产领域的应用[J].江苏农业科学,2015,43(08):409.
 Chen Guizhen,et al.Application of computer vision and pattern recognition in agricultural production field[J].Jiangsu Agricultural Sciences,2015,43(1):409.
[4]劳东青,陈立平,邬欢欢,等.基于计算机视觉的枣叶含水率估算模型[J].江苏农业科学,2015,43(04):384.
 Lao Dongqing,et al.Study on jujube leaf water content estimation model based on computer vision[J].Jiangsu Agricultural Sciences,2015,43(1):384.
[5]王爱新,李春友,张喆.基于计算机视觉的农业图像害虫定位检测算法[J].江苏农业科学,2016,44(07):361.
 Wang Aixin,et al.Agricultural image pest location detection algorithm based on computer vision[J].Jiangsu Agricultural Sciences,2016,44(1):361.
[6]祁卫宇,王传宇,郭新宇.基于计算机视觉的植物行为感知研究综述[J].江苏农业科学,2017,45(06):20.
 Qi Weiyu,et al.Study on plant behavior perception based on computer vision: a review[J].Jiangsu Agricultural Sciences,2017,45(1):20.
[7]邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160.
 Xing Zhizhong,et al.Detection of egg freshness based on computer vision detection and neural network[J].Jiangsu Agricultural Sciences,2017,45(1):160.
[8]宋常美,文晓鹏,李庆宏.红枫湖樱桃花粉超低温保存探究[J].江苏农业科学,2018,46(05):117.
 Song Changmei,et al.Study on pollen cryopreservation of cherry “Hongfenghu”[J].Jiangsu Agricultural Sciences,2018,46(1):117.
[9]陈彩文,杜永贵,周超,等.基于支持向量机的鱼群摄食行为识别技术[J].江苏农业科学,2018,46(07):226.
 Chen Caiwen,et al.Study on fish feeding behavior recognition technology based on support vector machine[J].Jiangsu Agricultural Sciences,2018,46(1):226.
[10]刘祖鹏.基于优化PCNN模型的黄瓜叶片病斑提取方法[J].江苏农业科学,2018,46(18):216.
 Liu Zupeng.A cucumber leaf lesion extraction method based on optimized PCNN mode[J].Jiangsu Agricultural Sciences,2018,46(1):216.

备注/Memo

备注/Memo:
收稿日期:2022-02-13
基金项目:国家自然科学基金(编号:61601076);大连市科技创新基金项目(编号:2020JJ26SN058、2021JJ13SN78)。
作者简介:胡玲艳(1978—),女,河北沧州人,博士,副教授,从事智慧农业、物联网、作物生长监测等研究。E-mail:hulingyan@dlu.edu.cn。
通信作者:汪祖民,博士,教授,从事物联网、智慧农业建设及效果评估等研究。E-mail:wangzumin@dlu.edu.cn。
更新日期/Last Update: 2023-01-05