[1]国家统计局. 中国第三产业统计年鉴:2022[M]. 北京:中国统计出版社,2022.
[2]李梅. 水果分拣技术的研究现状与发展[J]. 江苏理工学院学报,2018,24(2):121-124.
[3]高辉,马国峰,刘伟杰. 基于机器视觉的苹果缺陷快速检测方法研究[J]. 食品与机械,2020,36(10):125-129,148.
[4]王红军,熊俊涛,黎邹邹,等. 基于机器视觉图像特征参数的马铃薯质量和形状分级方法[J]. 农业工程学报,2016,32(8):272-277.
[5]田海韬,赵军,蒲富鹏. 马铃薯芽眼图像的分割与定位方法[J]. 浙江农业学报,2016,28(11):1947-1953.
[6]何军,马稚昱,褚璇,等. 基于机器视觉的芒果果形评价方法研究[J]. 现代农业装备,2021,42(1):56-60.
[7]李龙,彭彦昆,李永玉. 苹果内外品质在线无损检测分级系统设计与试验[J]. 农业工程学报,2018,34(9):267-275.
[8]张保华,李江波,樊书祥,等. 高光谱成像技术在果蔬品质与安全无损检测中的原理及应用[J]. 光谱学与光谱分析,2014,34(10):2743.
[9]Huang Y P,Lu R F,Chen K J. Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system[J]. Postharvest Biology and Technology,2020,161:111065.
[10]Nordey T,Joas J,Davrieux F,et al. Robust NIRS models for non-destructive prediction of mango internal quality[J]. Scientia Horticulturae,2017,216:51-57.
[11]Wang J H,Wang J,Chen Z,et al. Development of multi-cultivar models for predicting the soluble solid content and firmness of European pear (Pyrus communis L.) using portable vis-NIR spectroscopy[J]. Postharvest Biology and Technology,2017,129:143-151.
[12]Zhang D Y,Xu L,Wang Q Y,et al. The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by vis-NIR spectroscopy[J]. Food Analytical Methods,2019,12(1):136-147.
[13]迟茜,王转卫,杨婷婷,等. 基于近红外高光谱成像的猕猴桃早期隐性损伤识别[J]. 农业机械学报,2015,46(3):235-241,234.
[14]Tian X,Fan S X,Huang W Q,et al. Detection of early decay on citrus using hyperspectral transmittance imaging technology coupled with principal component analysis and improved watershed segmentation algorithms[J]. Postharvest Biology and Technology,2020,161:111071.
[15]Thien Pham Q,Liou N S. The development of on-line surface defect detection system for jujubes based on hyperspectral images[J]. Computers and Electronics in Agriculture,2022,194:106743.
[16]Zhang H L,Chen Y,Liu X M,et al. Identification of common skin defects and classification of early decayed Citrus using hyperspectral imaging technique[J]. Food Analytical Methods,2021,14(6):1176-1193.
[17]章海亮,高俊峰,何勇. 基于高光谱成像技术的柑橘缺陷无损检测[J]. 农业机械学报,2013,44(9):177-181.
[18]田有文,程怡,王小奇,等. 基于高光谱成像的苹果虫伤缺陷与果梗/花萼识别方法[J]. 农业工程学报,2015,31(4):325-331.
[19]Che W K,Sun L J,Zhang Q,et al. Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging[J]. Computers and Electronics in Agriculture,2018,146(C):12-21.
[20]Liu G S,He J G,Wang S L,et al. Application of near-infrared hyperspectral imaging for detection of external insect infestations on jujube fruit[J]. International Journal of Food Properties,2016,19(1):41-52.
[21]Guo W C,Zhao F,Dong J L. Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging[J]. Food Analytical Methods,2016,9(1):38-47.
[22]Lu Y Z,Huang Y P,Lu R F. Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables:a review[J]. Applied Sciences,2017,7(2):189.
[23]Zhang M,Li G H. Visual detection of apple bruises using AdaBoost algorithm and hyperspectral imaging[J]. International Journal of Food Properties,2018,21(1): 1598-1607.
[24]Devos O,Downey G,Duponchel L. Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils[J]. Food Chemistry,2014,148:124-130.
[25]Liu Y J,Yu Y D,Zhou X G,et al. A new automatic threshold selecting criteria for spectroscopy data processing[J]. Chemometrics and Intelligent Laboratory Systems,2017,161:8-14.
[26]Gerretzen J,Szymańska E,Jansen J J,et al. Simple and effective way for data preprocessing selection based on design of experiments[J]. Analytical Chemistry,2015,87(24):12096-12103.
[27]Engel J,Gerretzen J,Szymańska E,et al. Breaking with trends in pre-processing?[J]. TrAC Trends in Analytical Chemistry,2013,50:96-106.
[28]第五鹏瑶,卞希慧,王姿方,等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,39(9):2800.
[29]Keresztes J C,Goodarzi M,Saeys W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques[J]. Food Control,2016,66:215-226.
[30]Su Q H,Kondo N,Li M Z,et al. Potato quality grading based on machine vision and 3D shape analysis[J]. Computers and Electronics in Agriculture,2018,152(C):261-268.
[31]Zhang W Z,Hu J,Zhou G X,et al. Detection of apple defects based on the FCM-NPGA and a multivariate image analysis[J]. IEEE Access,2020,8:38833-38845.
[32]Pham Q T,Liou N S. Hyperspectral imaging system with rotation platform for investigation of jujube skin defects[J]. Applied Sciences,2020,10(8):2851.
[33]Balabanov P V,Divin A G,Egorov A S,et al. Vision system for detection of defects on apples using hyperspectral imaging coupled with neural network and Haar cascade algorithm[J]. IOP Conference Series:Materials Science and Engineering,2020,862(5):052058.
[34]Zhang H L,Zhang S,Dong W T,et al. Detection of common defects on mandarins by using visible and near infrared hyperspectral imaging[J]. Infrared Physics & Technology,2020,108:103341.
[35]Zhang B H,Liu L S,Gu B X,et al. From hyperspectral imaging to multispectral imaging:Portability and stability of HIS-MIS algorithms for common defect detection[J]. Postharvest Biology and Technology,2018,137:95-105.
[36]Xie C Q,Lee W S. Detection of citrus black spot symptoms using spectral reflectance[J]. Postharvest Biology and Technology,2021,180:111627.
[37]Liu Y S,Zhou S B,Wu H M,et al. Joint optimization of autoencoder and self-supervised classifier:anomaly detection of strawberries using hyperspectral imaging[J]. Computers and Electronics in Agriculture,2022,198:107007.
[38]Mesa A R,Chiang J Y. Multi-input deep learning model with RGB and hyperspectral imaging for banana grading[J]. Agriculture,2021,11(8):687.
[39]Pan T T,Chyngyz E,Sun D W,et al. Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging[J]. Postharvest Biology and Technology,2019,154:96-104.
[40]Munera S,Gómez-Sanchís J,Aleixos N,et al. Discrimination of common defects in loquat fruit cv.‘Algerie’ using hyperspectral imaging and machine learning techniques[J]. Postharvest Biology and Technology,2021,171:111356.
[41]Li J B,Chen L P,Huang W Q,et al. Multispectral detection of skin defects of bi-colored peaches based on vis-NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2016,112:121-133.
[42]Rady A,Ekramirad N,Adedeji A A,et al. Hyperspectral imaging for detection of codling moth infestation in GoldRush apples[J]. Postharvest Biology and Technology,2017,129:37-44.
[45]Wu L G,He J G,Liu G S,et al. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2016,112:134-142.
[43]Zhu X L,Li G H. Rapid detection and visualization of slight bruise on apples using hyperspectral imaging[J]. International Journal of Food Properties,2019,22(1):1709-1719.
[44]吴龙国,王松磊,康宁波,等. 基于高光谱成像技术的灵武长枣缺陷识别[J]. 农业工程学报,2015,31(20):281-286.
[45]Wu L G,He J G,Liu G S,et al. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2016,112:134-142.
[46]Yuan R R,Liu G S,He J G,et al. Classification of Lingwu long jujube internal bruise over time based on visible near-infrared hyperspectral imaging combined with partial least squares-discriminant analysis[J]. Computers and Electronics in Agriculture,2021,182:106043.
[47]Munera S,Rodríguez-Ortega A,Aleixos N,et al. Detection of invisible damages in ‘Rojo Brillante’ persimmon fruit at different stages using hyperspectral imaging and chemometrics[J]. Foods,2021,10(9):2170.
[48]Fang Y M,Yang F,Zhou Z,et al. Hyperspectral wavelength selection and integration for bruise detection of Korla pears[J]. Journal of Spectroscopy,2019,2019:6715247.
[49]Fan S X,Li C Y,Huang W Q,et al. Detection of blueberry internal bruising over time using NIR hyperspectral reflectance imaging with optimum wavelengths[J]. Postharvest Biology and Technology,2017,134:55-66.
[50]Pan X Y,Sun L J,Li Y S,et al. Non-destructive classification of apple bruising time based on visible and near-infrared hyperspectral imaging[J]. Journal of the Science of Food and Agriculture,2019,99(4):1709-1718.
[51]Tang Y,Gao S J,Zhuang J J,et al. Apple bruise grading using piecewise nonlinear curve fitting for hyperspectral imaging data[J]. IEEE Access,2020,8:147494-147506.
[52]Huang W Q,Li J B,Wang Q Y,et al. Development of a multispectral imaging system for online detection of bruises on apples[J]. Journal of Food Engineering,2015,146:62-71.
[53]Wang Z D,Hu M H,Zhai G T. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data[J]. Sensors,2018,18(4):1126.
[54]Zhang M Y,Jiang Y,Li C Y,et al. Fully convolutional networks for blueberry bruising and calyx segmentation using hyperspectral transmittance imaging[J]. Biosystems Engineering,2020,192:159-175.
[55]Gai Z D,Sun L J,Bai H Y,et al. Convolutional neural network for apple bruise detection based on hyperspectral[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,279:121432.
[56]Pang Q,Huang W Q,Fan S X,et al. Detection of early bruises on apples using hyperspectral imaging combining with YOLO v3 deep learning algorithm[J]. Journal of Food Process Engineering,2022,45(2):1-14.
[57]Luo W,Zhang H L,Liu X M. Hyperspectral/multispectral reflectance imaging combining with watershed segmentation algorithm for detection of early bruises on apples with different peel colors[J]. Food Analytical Methods,2019,12(5):1218-1228.
[58]Li J B,Zhang R Y,Li J B,et al. Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method[J]. Postharvest Biology and Technology,2019,158:110986.
[59]Tian X,Zhang C,Li J B,et al. Detection of early decay on citrus using LW-NIR hyperspectral reflectance imaging coupled with two-band ratio and improved watershed segmentation algorithm[J]. Food Chemistry,2021,360:130077.
[60]Luo W,Fan G Z,Tian P,et al. Spectrum classification of citrus tissues infected by fungi and multispectral image identification of early rotten oranges[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,279:121412.
[61]Liu Q,Wei K L,Xiao H,et al. Near-infrared hyperspectral imaging rapidly detects the decay of postharvest strawberry based on water-soluble sugar analysis[J]. Food Analytical Methods,2019,12(4):936-946.
[62]Siedliska A,Baranowski P,Zubik M,et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology,2018,139:115-126.
[63]Liu Q,Sun K,Peng J,et al. Identification of bruise and fungi contamination in strawberries using hyperspectral imaging technology and multivariate analysis[J]. Food Analytical Methods,2018,11(5):1518-1527.
[64]Zhang B H,Fan S X,Li J B,et al. Detection of early rottenness on apples by using hyperspectral imaging combined with spectral analysis and image processing[J]. Food Analytical Methods,2015,8(8):2075-2086.
[65]Ekramirad N,Khaled A Y,Doyle L E,et al. Nondestructive detection of codling moth infestation in apples using pixel-based NIR hyperspectral imaging with machine learning and feature selection[J]. Foods,2021,11(1):8.
[66]Sun Y,Wei K L,Liu Q,et al. Classification and discrimination of different fungal diseases of three infection levels on peaches using hyperspectral reflectance imaging analysis[J]. Sensors,2018,18(4):1295.
[67]Fazari A,Pellicer-Valero O J,Gómez-Sanchs J,et al. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images[J]. Computers and Electronics in Agriculture,2021,187:106252.
[68]ElMasry G,Wang N,Vigneault C. Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks[J]. Postharvest Biology and Technology,2009,52(1):1-8.
[69]Sun Y,Gu X Z,Sun K,et al. Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches[J]. LWT,2017,75:557-564.
[70]Lu H D,Yu X J,Zhou L J,et al. Selection of spectral resolution and scanning speed for detecting green jujubes chilling injury based on hyperspectral reflectance imaging[J]. Applied Sciences,2018,8(4):523.
[71]Lan W J,Jaillais B,Renard C M G C,et al. A method using near infrared hyperspectral imaging to highlight the internal quality of apple fruit slices[J]. Postharvest Biology and Technology,2021,175:111497.
[72]Tian X,Li J B,Wang Q Y,et al. A multi-region combined model for non-destructive prediction of soluble solids content in apple,based on brightness grade segmentation of hyperspectral imaging[J]. Biosystems Engineering,2019,183:110-120.
[73]Zhu H Y,Chu B Q,Fan Y Y,et al. Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models[J]. Scientific Reports,2017,7(1):7845.
[74]Hu W H,Sun D W,Blasco J. Rapid monitoring 1-MCP-induced modulation of sugars accumulation in ripening ‘Hayward’ kiwifruit by Vis/NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2017,125:168-180.
[75]Ma T,Xia Y,Inagaki T,et al. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach[J]. Postharvest Biology and Technology,2021,174:111440.
[76]Silva R,Gomes V,Mendes-Faia A,et al. Using support vector regression and hyperspectral imaging for the prediction of oenological parameters on different vintages and varieties of wine grape berries[J]. Remote Sensing,2018,10(2):312.
[77]Gao S,Xu J H. Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes[J]. Computers and Electronics in Agriculture,2022,196:106822.
[78]Yang B H,Gao Y,Yan Q,et al. Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery[J]. Sensors,2020,20(18):5021-5033.
[79]Pan L Q,Zhang Q,Zhang W,et al. Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network[J]. Food Chemistry,2016,192:134-141.
[80]Munera S,Blasco J,Amigo J M,et al. Use of hyperspectral transmittance imaging to evaluate the internal quality of nectarines[J]. Biosystems Engineering,2019,182:54-64.
[81]Liu Y,Wang H H,Fei Y Q,et al. Research on the prediction of green plum acidity based on improved XGBoost[J]. Sensors,2021,21(3):930.
[82]Gao Q,Wang P,Niu T,et al. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging[J]. Food Chemistry,2022,370:131013.
[83]孙静涛,马本学,董娟,等. 高光谱技术结合特征波长筛选和支持向量机的哈密瓜成熟度判别研究[J]. 光谱学与光谱分析,2017,37(7):2184.
[84]Sun M J,Zhang D,Liu L,et al. How to predict the sugariness and hardness of melons:a near-infrared hyperspectral imaging method[J]. Food Chemistry,2017,218:413-421.
[85]Li Y J,Ma B X,Li C,et al. Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models[J]. Computers and Electronics in Agriculture,2022,193:106655.
[86]Weng S Z,Yu S,Dong R L,et al. Nondestructive detection of storage time of strawberries using visible/near-infrared hyperspectral imaging[J]. International Journal of Food Properties,2020,23(1):269-281.
[87]Weng S Z,Yu S,Guo B Q,et al. Non-destructive detection of strawberry quality using multi-features of hyperspectral imaging and multivariate methods[J]. Sensors,2020,20(11):3074.
[88]Kang Z L,Geng J P,Fan R S,et al. Nondestructive testing model of mango dry matter based on fluorescence hyperspectral imaging technology[J]. Agriculture,2022,12(9):1337.
[89]Teerachaichayut S,Ho H T. Non-destructive prediction of total soluble solids,titratable acidity and maturity index of limes by near infrared hyperspectral imaging[J]. Postharvest Biology and Technology,2017,133:20-25.
[90]Fan S X,Zhang B H,Li J B,et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J]. Postharvest Biology and Technology,2016,121:51-61.
[91]Dong J L,Guo W C,Wang Z W,et al. Nondestructive determination of soluble solids content of ‘fuji’ apples produced in different areas and bagged with different materials during ripening[J]. Food Analytical Methods,2016,9(5):1087-1095.
[92]Zhang H L,Zhan B S,Pan F,et al. Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models[J]. Postharvest Biology and Technology,2020,163:111148.
[93]Meng Q L,Shang J,Huang R S,et al. Determination of soluble solids content and firmness in plum using hyperspectral imaging and chemometric algorithms[J]. Journal of Food Process Engineering,2021,44(1):1-9.
[94]Xu M,Sun J,Yao K S,et al. Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging[J]. Infrared Physics & Technology,2022,120:104003.
[95]Yu X J,Lu H D,Wu D. Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging[J]. Postharvest Biology and Technology,2018,141:39-49.
[96]Chu X,Miao P,Zhang K,et al. Green banana maturity classification and quality evaluation using hyperspectral imaging[J]. Agriculture,2022,12(4):530.
[97]Juan F,Ignacio B,Paz D M. Non-invasive monitoring of berry ripening using on-the-go hyperspectral imaging in the vineyard[J]. Agronomy,2021,11(12):2534.
[98]Shao Y Y,Wang Y X,Xuan G T,et al. Assessment of strawberry ripeness using hyperspectral imaging[J]. Analytical Letters,2021,54(10):1547-1560.
[1]纪韦韦,朱雅君,宋青.辐照检疫处理对香蕉货架品质的影响[J].江苏农业科学,2014,42(12):309.
Ji Weiwei,et al.Effect of quarantine radiation treatment on quality of banana in shelf life[J].Jiangsu Agricultural Sciences,2014,42(15):309.
[2]贾永华,李晓龙,牛锐敏,等.叶面喷锌对苹果叶片生长及产量品质的影响[J].江苏农业科学,2014,42(12):218.
Jia Yonghua,et al.Effects of spraying zinc on leaves on leaf growth , yield and quality of apple[J].Jiangsu Agricultural Sciences,2014,42(15):218.
[3]毛久庚,肖旭,赵荷娟.中药渣培养料优化对草菇品质与产量的影响[J].江苏农业科学,2014,42(11):265.
Mao Jiugeng,et al().Effects of optimization of Chinese medicine residue culture medium on quality and yield of straw mushroom[J].Jiangsu Agricultural Sciences,2014,42(15):265.
[4]陆辉山,张林.水果糖酸度品质实时检测装置的设计[J].江苏农业科学,2014,42(10):289.
Lu Huishan,et al.Design of real-time detection device for fruit sugar acidity[J].Jiangsu Agricultural Sciences,2014,42(15):289.
[5]汤瑾,周翠英,周建俭,等.甜菊糖苷在杨梅汁饮料中的应用[J].江苏农业科学,2014,42(10):241.
Tang Jin,et al.Application of stevioside in bayberry juice beverage[J].Jiangsu Agricultural Sciences,2014,42(15):241.
[6]李恒锐,邱文武,马文清,等.不同类型肥料对甘蔗产量及品质的影响[J].江苏农业科学,2014,42(10):83.
Li Hengrui,et al.Effects of different types of fertilizers on yield and quality of cane[J].Jiangsu Agricultural Sciences,2014,42(15):83.
[7]马凤霞,赵权.乙烯利、ABA对北五味子品质的影响[J].江苏农业科学,2014,42(09):218.
Ma Fengxia,et al.Effects of ethephon and abscisic acid on quality of Schisandra chinensis (Turcz.) Baill.[J].Jiangsu Agricultural Sciences,2014,42(15):218.
[8]施郁荫,刘宝林.冻干速溶绿茶粉工艺优化[J].江苏农业科学,2013,41(08):269.
Shi Yuyin,et al.Optimization of freeze-dried instant green tea powder technology[J].Jiangsu Agricultural Sciences,2013,41(15):269.
[9]杨迎东,冯秀丽,胡新颖.氮营养对切花菊优香品质的影响[J].江苏农业科学,2014,42(09):142.
Yang Yingdong,et al.Effect of nitrogen nutrition on quality of cut chrysanthemum “Youxiang”[J].Jiangsu Agricultural Sciences,2014,42(15):142.
[10]乔海龙,陈和,陈健,等.盐胁迫对不同大麦品种产量及品质的影响[J].江苏农业科学,2014,42(09):83.
Qiao Hailong,et al.Effects of salt stress on yield and quality of different barley varieties[J].Jiangsu Agricultural Sciences,2014,42(15):83.