|本期目录/Table of Contents|

[1]曹萌,张侠,胡成浩,等.藜麦AQP基因家族的鉴定及表达分析[J].江苏农业科学,2025,53(4):277-286.
 Cao Meng,et al.Identification and expression analysis of AQP gene family in quinoa(Chenopodium quinoa Willd.)[J].Jiangsu Agricultural Sciences,2025,53(4):277-286.
点击复制

藜麦AQP基因家族的鉴定及表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第4期
页码:
277-286
栏目:
多抗性基因
出版日期:
2025-02-20

文章信息/Info

Title:
Identification and expression analysis of AQP gene family in quinoa(Chenopodium quinoa Willd.)
作者:
曹萌1张侠1胡成浩1高爱红1安珂欣1赵波3张平3郭善利12尹海波1
1.烟台大学生命科学学院,山东烟台 264006; 2.青岛农业大学草业学院,山东青岛 266109;3.中藜盐地藜麦(东营)种业科技有限公司,山东东营 257345
Author(s):
Cao Menget al
关键词:
藜麦水通道蛋白基因家族分析非生物胁迫基因表达
Keywords:
-
分类号:
S188;S519.01
DOI:
-
文献标志码:
A
摘要:
植物水通道蛋白位于生物膜上,是可高效转运水分子的膜内在蛋白,参与植物的多种逆境胁迫应答过程。为了研究藜麦水通道蛋白基因家族CqAQP的相关功能,基于藜麦全基因组信息,采用生物信息学方法鉴定藜麦CqAQP基因家族成员。藜麦CqAQP家族共有55个成员,根据系统发育分析分为4个亚家族:NIP、PIP、SIP和TIP。CqAQP散布在除了8、9、12号的其他染色体上;亚细胞定位预测家族成员主要位于细胞膜和液泡膜。CqAQP基因含有2~6个外显子,1~5个内含子。片段重复和串联重复是CqAQP基因家族的主要扩增途径。CqAQP基因启动子区包括非生物胁迫响应、激素响应以及与生长发育相关的顺式作用元件;基于转录组水平的组织和非生物胁迫表达模式分析发现,藜麦CqAQP基因组织差异性表达明显,且大部分CqAQP基因对盐、干旱、热和低磷胁迫有响应。
Abstract:
-

参考文献/References:

[1]Maurel C,Santoni V,Luu D T,et al. The cellular dynamics of plant aquaporin expression and functions[J]. Current Opinion in Plant Biology,2009,12(6):690-698.
[2]徐德,徐建俊,李彪,等. 植物水通道蛋白研究进展[J]. 分子植物育种,2019,17(14):4674-4678.
[3]张璐,杜相革. 植物水孔蛋白研究进展[J]. 植物科学学报,2014,32(3):304-314.
[4]周杰,钟诗蔚,方遒,等. 桂花AQP基因家族鉴定及在花开放阶段的表达分析[J]. 农业生物技术学报,2023,31(5):943-957.
[5]Maurel C. Plant aquaporins:novel functions and regulation properties[J]. FEBS Letters,2007,581(12):2227-2236.
[6]Gattolin S,Sorieul M,Frigerio L. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane[J]. Molecular Plant,2011,4(1):180-189.
[7]Qian Z J,Song J J,Chaumont F,et al. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses[J]. Plant,Cell & Environment,2015,38(3):461-473.
[8]Pou A,Jeanguenin L,Milhiet T,et al. Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7[J]. Plant Molecular Biology,2016,92(6):731-744.
[9]付柳枝. 棉花(Gossypium hirsutum)水孔蛋白GhPIP1;4参与植物干旱、高盐胁迫应答功能研究[D]. 武汉:华中师范大学,2018:25-31.
[10]焦天奇,孙辉,刘瑞娜,等. 转天山雪莲sikPIP3基因烟草的获得及抗逆性鉴定[J]. 西北植物学报,2012,32(3):431-438.
[11]尚珂含,杨舒婷,卞诗村,等. 芹菜水孔蛋白基因AgPIP2;1的克隆及其对非生物胁迫的响应[J]. 核农学报,2020,34(2):231-239.
[12]顾娴,黄杰,魏玉明,等. 藜麦研究进展及发展前景[J]. 中国农学通报,2015,31(30):201-204.
[13]白丽丽,史军辉,刘茂秀,等. 藜麦特性研究进展综述[J]. 植物医生,2020,33(5):22-27.
[14]韩建玮,杨冬冬,曹萌,等. 藜麦RBOH基因家族的鉴定及表达模式分析[J]. 烟台大学学报(自然科学与工程版),2023,36(4):410-418.
[15]刘俊娜,孔治有,张平,等. 播期对藜麦主要农艺性状及籽粒矿物质元素含量的影响[J]. 河南农业科学,2022,51(3):38-46.
[16]郭佳强,曾鑫,陈孝平. 植物抗低温胁迫的研究进展[J]. 武汉工程大学学报,2023,45(2):119-125.
[17]李聪聪,宋勇,孙东泉. 不同品种玉米在盐碱复合胁迫下的幼苗生长差异及其生理机制[J]. 生态学杂志,2023,42(10):2486-2493.
[18]肖小辉,李天成,周湘林,等. 干旱胁迫对闽楠幼苗的生长及生理特性的影响[J]. 中国农业文摘-农业工程,2023,35(3):17-21.
[19]余贝,武志海,符冠富. 盐胁迫影响水稻生理特性及其调控机理研究进展[J]. 作物研究,2023,37(2):189-198.
[20]张丽丽,彭丹,张冀,等. 水通道蛋白在植物抗逆中的功能及其调控机制[J]. 分子植物育种,2017,15(11):4441-4450.
[21]Zhu Y X,Yang L,Liu N,et al. Genome-wide identification,structure characterization,and expression pattern profiling of aquaporin gene family in cucumber[J]. BMC Plant Biology,2019,19(1):345.
[22]Li S F,Wang L,Zhang Y X,et al. Genome-wide identification and function of aquaporin genes during dormancy and sprouting periods of kernel-using apricot (Prunus armeniaca L.)[J]. Frontiers in Plant Science,2021,12:690040.
[23]Chaumont F,Barrieu F,Wojcik E,et al. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiology,2001,125(3):1206-1215.
[24]Nguyen M X,Moon S,Jung K H.Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots[J]. Planta,2013,238(4):669-681.
[25]Bezerra-Neto J P,de Araújo F C,Ferreira-Neto J R C,et al. Plant aquaporins:diversity,evolution and biotechnological applications[J]. Current Protein & Peptide Science,2019,20(4):368-395.
[26]Zhang D Y,Ali Z,Wang C B,et al. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.)[J]. PLoS One,2013,8(2):e56312.
[27]Etienne A,Génard M,Lobit P,et al. What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J]. Journal of Experimental Botany,2013,64(6):1451-1469.
[28]Sakurai J,Ishikawa F,Yamaguchi T,et al. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant & Cell Physiology,2005,46(9):1568-1577.
[29]Noronha H,Agasse A,Martins A P,et al. The grape aquaporin VvSIP1 transports water across the ER membrane[J]. Journal of Experimental Botany,2014,65(4):981-993.
[30]Johanson U,Karlsson M,Johansson I,et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology,2001,126(4):1358-1369.
[31]Aroca R,Amodeo G,Fernández-Illescas S,et al. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots[J]. Plant Physiology,2005,137(1):341-353.
[32]Abreu E F M,Arago F J L. Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress[J]. Annals of Botany,2007,99(2):285-292.
[33]Zhou S Y,Hu W,Deng X M,et al. Overexpression of the wheat aquaporin gene,TaAQP7,enhances drought tolerance in transgenic tobacco[J]. PLoS One,2012,7(12):e52439.

相似文献/References:

[1]陆敏佳,莫秀芳,王勤,等.藜麦基因组DNA提取方法的比较[J].江苏农业科学,2014,42(04):42.
 Lu Minjia,et al.Comparison of extraction methods of genomic DNA from Chenopodium quinoa[J].Jiangsu Agricultural Sciences,2014,42(4):42.
[2]孙雪婷,袁俊杰,蒋玉蓉,等.藜麦种子总黄酮提取及其抗氧化性[J].江苏农业科学,2015,43(10):355.
 Sun Xueting,et al.Extraction of flavonoid from quinoa seeds and its antioxidant activity[J].Jiangsu Agricultural Sciences,2015,43(4):355.
[3]董晶,张焱,曹赵茹,等.藜麦总黄酮的超声波法提取及抗氧化活性[J].江苏农业科学,2015,43(04):267.
 Dong Jing,et al.Utrasonic extraction and antioxidant activity of total flavonoids from quinoa[J].Jiangsu Agricultural Sciences,2015,43(4):267.
[4]俞涵译,蒋玉蓉,毛泽阳,等.藜麦愈伤组织诱导体系优化研究[J].江苏农业科学,2015,43(03):26.
 Yu Hanyi,et al.Study on optimization of callus induction system in Chenopodium quinoa[J].Jiangsu Agricultural Sciences,2015,43(4):26.
[5]徐澜,郭晨晨,赵慧.超声波辅助提取藜麦多糖及其抑菌性与抗氧化性[J].江苏农业科学,2017,45(11):143.
 Xu Lan,et al.Ultrasonic-assisted extraction of quinoa polysaccharide and its bacteriostasis and antioxidant activity[J].Jiangsu Agricultural Sciences,2017,45(4):143.
[6]顾闽峰,王乃顶,王军,等.盐胁迫对不同藜麦品种发芽率及幼苗生长的影响[J].江苏农业科学,2017,45(22):77.
 Gu Minfeng,et al.Effects of salt stress on germination rate and seedling growth of different quinoa varieties[J].Jiangsu Agricultural Sciences,2017,45(4):77.
[7]时丕彪,耿安红,李亚芳,等.江苏沿海地区12个藜麦品种田间综合评价及优良品种的耐渍性分析[J].江苏农业科学,2018,46(15):64.
 Shi Pibiao,et al.Comprehensive evaluation of twelve Chenopodium quinoa cultivars and analysis of waterlogging tolerance of excellent cultivars in Jiangsu coastal area[J].Jiangsu Agricultural Sciences,2018,46(4):64.
[8]华艳宏,庞春花,张永清,等.藜麦种子不同溶剂提取物及其抗氧化活性[J].江苏农业科学,2018,46(20):225.
 Hua Yanhong,et al.Study on different solvent extracts of quinoa seeds and their antioxidant activity[J].Jiangsu Agricultural Sciences,2018,46(4):225.
[9]修妤,梁晓艳,石瑞常,等.混合盐碱胁迫对藜麦苗期植株及根系生长特征的影响[J].江苏农业科学,2020,48(04):89.
 Xiu Yu,et al.Effects of complex salt-alkali stresses on the plant and root growth of Chenopodium quinoa[J].Jiangsu Agricultural Sciences,2020,48(4):89.
[10]华劲松,赵应林,王华强,等.不同收获时间对藜麦籽粒产量及物理特性的影响[J].江苏农业科学,2020,48(21):119.
 Hua Jingsong,et al.Effects of different harvest time on seed yield and physical properties of qinoa[J].Jiangsu Agricultural Sciences,2020,48(4):119.

备注/Memo

备注/Memo:
收稿日期:2024-02-20
基金项目:山东省重点研发计划(农业良种工程品种培育)(编号:2023LZGC011);烟台市校地融合发展项目(编号:SM21JY05)。
作者简介:曹萌(1998—),女,山东菏泽人,硕士研究生,主要从事植物遗传育种研究。E-mail:caomeng123@s.ytu.edu.cn。
通信作者:尹海波,博士,副教授,主要从事植物遗传育种研究。E-mail:yhb@ytu.edu.cn。
更新日期/Last Update: 2025-02-20