|本期目录/Table of Contents|

[1]乐易林,倪黎,郭星星,等.嗜热菌乙醇代谢途径研究进展[J].江苏农业科学,2016,44(11):22-25.
 Le Yilin,et al.Research progress of ethanol metabolic pathway of thermophilic microorganisms[J].Jiangsu Agricultural Sciences,2016,44(11):22-25.
点击复制

嗜热菌乙醇代谢途径研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年11期
页码:
22-25
栏目:
专论
出版日期:
2016-11-25

文章信息/Info

Title:
Research progress of ethanol metabolic pathway of thermophilic microorganisms
作者:
乐易林 倪黎 郭星星 邵蔚蓝
江苏大学环境与安全工程学院生物质能源研究所,江苏镇江 212013
Author(s):
Le Yilinet al
关键词:
木质纤维素乙醇嗜热菌代谢途径五碳糖
Keywords:
-
分类号:
S216.2
DOI:
-
文献标志码:
A
摘要:
微生物利用木质纤维素发酵生产乙醇是可再生能源发展策略之一。人们对常温菌发酵生产乙醇的代谢途径和机理进行了广泛深入的研究。目前天然高效发酵产乙醇菌不能利用五碳糖,因为能利用五碳糖的常温菌乙醇产率低。随着产乙醇嗜热微生物的深入研究,嗜热菌发酵产乙醇的发展为研究带来了契机。文中综述了发酵产乙醇嗜热菌的种类、代谢途径及其关键酶功能特性的研究进展。
Abstract:
-

参考文献/References:

[1]Kunduru M R,Pometto A L. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors[J]. J Ind Microbiol,1996,16(4):249-256.
[2]Ingram L O,Gomez P F,Lai X,et al. Metabolic engineering of bacteria for ethanol production[J]. Biotechnol Bioeng,1998,58(2/3):204-214.
[3]Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev,2008,72(3):379-412.
[4]Frster A H,Gescher J. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products[J]. Front Bioeng Biotechnol,2014,2:16.
[5]Wiegel J. Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes[J]. Experientia,1980,36(12):1434-1446.
[6]Mistry F R,Cooney C L. Production of ethanol by Clostridium thermosaccharolyticum:Ⅰ. Effect of cell recycle and environmental parameters[J]. Biotechnol Bioeng,1989,34(10):1295-1304.
[7]Akinosho H,Yee K,Close D,et al. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications[J]. Front Chem,2014,2:66.
[8]Currie D H,Raman B,Gowen C M,et al. Genome-scale resources for Thermoanaerobacterium saccharolyticum[J]. BMC Syst Biol,2015,9(1):1.
[9]Almarsdottir A R,Sigurbjornsdottir M A,Orlygsson J. Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK17[J]. Biotechnol Bioeng,2012,109(3):686-694.
[10]Shang S M,Qian L,Zhang X,et al. Themoanaerobacterium calidifontis sp. nov.,a novel anaerobic,thermophilic,ethanol-producing bacterium from hot springs in China[J]. Arch Microbiol,2013,195(6):439-45.
[11]Wiegel J,Ljungdahl L G. Thermoanaerobacter ethanolicus gen. nov.,spec. nov.,a new,extremely,thermophilic,anaerobic bacterium[J]. Arch Microbiol,1981,128(4):343-348.
[12]Isern N G,Xue J,Rao J V,et al. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy[J]. Biotechnol Biofuels,2013,6(1):47.
[13]Larsen L,Nielsen P,Ahring B K. Thermoanaerobacter mathranii sp. nov.,an ethanol-producing,extremely thermophilic anaerobic bacterium from a hot spring in Iceland[J]. Arch Microbiol,1997,168(2):114-119.
[14]Ma K,Loessner H,Heider J,et al. Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1:characterization of a sulfur-regulated,non-heme iron alcohol dehydrogenase[J]. J Bacteriol,1995,177(16):4748-4756.
[15]Kengen S W,de Bok F A,van Loo N D,et al. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus[J]. J Biol Chem,1994,269(26):17537-17541.
[16]Ying X,Ma K. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis[J]. J Bacteriol,2011,193(12):3009-3019.
[17]Prokofeva M I,Kostrikina N A,Kolganova T V,et al. Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov.,including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov[J]. Int J Syst Evol Microbiol,2009,59(12):3116-3122.
[18]Jochimsen B,Peinemann-Simon S,Vlker H,et al. Stetteria hydrogenophila,gen. nov. and sp. nov.,a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos,Greece[J]. Extremophiles,1997,1(2):67-73.
[19]Vrije T,Bakker R R,Budde M A,et al. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana[J]. Biotechnol Biofuels,2009,2(1):12.
[20]Eram M S,Wong A,Oduaran E,et al. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea[J]. J Biochem,2015,158(6):459-466.
[21]Stetter,K O. Hyperthermophilic prokaryotes[J]. FEMS Microbiol Rev,1996,18:149-158.
[22]Holt P J,Williams R E,Jordan K N,et al. Cloning,sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200[J]. FEMS Microbiol Lett,2000,190(1):57-62.
[23]Burdette D S,Vieille C,Zeikus J G. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme[J]. Biochem J,1996,316(1):115-122.
[24]Peng H,Wu G,Shao W. The aldehyde/alcohol dehydrogenase(AdhE)in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200[J]. Anaerobe,2008,14(2):125-127.
[25]Pei J,Zhou Q,Jiang Y,et al. Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes[J]. Metab Eng,2010,12(5):420-428.
[26]Pei J,Zhou Q,Jing Q,et al. The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus[J]. Metab Eng,2011,13(2):186-193.
[27]Eram M S,Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles[J]. Biomolecules,2013,3(3):578-596.
[28]Ying X,Ma K. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis[J]. J Bacteriol,2011,193(12):3009-3019.
[29]Ying X,Grunden A M,Nie L,et al. Molecular characterization of the recombinant iron-containing alcohol dehydrogenase from the hyperthermophilic Archaeon,Thermococcus strain ES1[J]. Extremophiles,2009,13(2):299-311.
[30]Ma K,Adams M W. An unusual oxygen-sensitive,iron-and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus[J]. J Bacteriol,1999,181(4):1163-1170.
[31]Schwarzenbacher R,von Delft F,Canaves J M,et al. Crystal structure of an iron-containing 1,3-propanediol dehydrogenase(TM0920)from Thermotoga maritima at 1.3 A resolution[J]. Proteins,2004,54(1):174-177.
[32]Ma K,Hutchins A,Sung S J,et al. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon,Pyrococcus furiosus,functions as a CoA-dependent pyruvate decarboxylase[J]. Proc Natl Acad Sci,1997,94(18):9608-9613.
[33]Eram M S,Oduaran E,Ma K. The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis[J]. Archaea,2014,2014:349379.
[34]Eram M S,Wong A,Oduaran E,et al. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea[J]. J Biochem,2015,158(6):459-466.
[35]Yoon K S,Ishii M,Kodama T,et al. Purification and characterization of pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6[J]. Arch Microbiol,1997,167(5):275-279.
[36]Meinecke B,Bertram J,Gottschalk G. Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum[J]. Arch Microbiol,1989,152(3):244-250.
[37]Peng H,Fu B,Mao Z,et al. Electrotransformation of Thermoanaerobacter ethanolicus JW200[J]. Biotechnol Lett,2006,28(23):1913-1917.
[38]Lin L,Song H,Ji Y,et al. Ultrasound-mediated DNA transformation in thermophilic gram-positive anaerobes[J]. PLoS One,2010,5(9):e12582.
[39]Farkas J,Stirrett K,Lipscomb G L,et al. Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants[J]. Appl Environ Microbiol,2012,78(13):4669-4676.
[40]Lipscomb G L,Stirrett K,Schut G J,et al. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation:construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases[J]. Appl Environ Microbiol,2011,77(7):2232-2238.
[41]Hopkins R C,Sun J,Francis E,et al. Homologous expression of a subcomplex of Pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase[J]. PLoS One,2011,6(10):e26569.
[42]Thiel A,Michoud G,Moalic Y,et al. Genetic manipulations of the hyperthermophilic piezophilic archaeon Thermococcus barophilus[J]. Appl Environ Microbiol,2014,80(7):2299-2306.

相似文献/References:

[1]张宏喜,周婷婷,李楠,等.利用乙醇自催化法提取棉秆中的木质素[J].江苏农业科学,2013,41(06):243.
 Zhang Hongxi,et al.Extraction of lignin from cotton stalks by pulping autocatalytic method of ethanol[J].Jiangsu Agricultural Sciences,2013,41(11):243.
[2]胡耀池,章文贵,詹妮娜,等.乙醇脱水产物的气相色谱分析[J].江苏农业科学,2014,42(10):286.
 Hu Yaochi,et al.Analysis of ethanol dehydration products via gas chromatography[J].Jiangsu Agricultural Sciences,2014,42(11):286.
[3]牟建梅,张国芹,刘凤军,等.白菜叶绿素含量的测定方法筛选[J].江苏农业科学,2014,42(09):289.
 Mou Jianmei,et al.Screening of determination methods of chlorophyll content of non heading Chinese cabbage[J].Jiangsu Agricultural Sciences,2014,42(11):289.
[4]陈俊英,刘永丽,黄会杰,等.木薯粉乙醇清液发酵中糖化条件的研究[J].江苏农业科学,2015,43(07):272.
 Chen Junying,et al.Study on saccharification condition of ethanol fermentation of cassava starch clarifying liquor[J].Jiangsu Agricultural Sciences,2015,43(11):272.
[5]高慧,陈燕.江苏省淮安市设施土壤根结线虫发生状况及乙醇防治效果[J].江苏农业科学,2014,42(07):131.
 Gao Hui,et al.Incidence and ethanol control effect of root knot nematodes in greenhouse soil in Huaian,Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(11):131.
[6]费文斌,雍晓雨,徐俊,等.1株耐热产乙醇酵母的分离、鉴定与性能测试[J].江苏农业科学,2015,43(03):319.
 Fei Wenbin,et al.Separation,identification and performance test of a strain of heat-resisting and alcohol producing yeast[J].Jiangsu Agricultural Sciences,2015,43(11):319.
[7]何水清,艾士奇,王建豪,等.木质纤维素分解复合菌系的分解特性与细菌组成多样性分析[J].江苏农业科学,2017,45(16):241.
 He Shuiqing,et al.Decomposition characteristics and bacteria composition diversity analysis of Lignocellulose-decomposing complex strain[J].Jiangsu Agricultural Sciences,2017,45(11):241.
[8]何士成,彭太兵,孙曼钰,等.碱处理中温度对不同底物特性木质纤维素结构及酶解的影响[J].江苏农业科学,2017,45(21):292.
 He Shicheng,et al.Effects of temperature on structure and enzymatic hydrolysis of lignocellulose with different substrate properties under alkali pretreatment[J].Jiangsu Agricultural Sciences,2017,45(11):292.
[9]孙曼钰,彭太兵,何士成,等.联合生物加工木质纤维素生产生物乙醇的研究进展[J].江苏农业科学,2018,46(08):5.
 Sun Manyu,et al.Research progress on bioethanol production by consolidated bioprocessing(CBP) of lignocellulose[J].Jiangsu Agricultural Sciences,2018,46(11):5.
[10]孙曼钰,李栋梁,舒月力,等.尖孢镰刀菌诱导产酶及同步糖化发酵产纤维素乙醇[J].江苏农业科学,2019,47(02):277.
 Sun Manyu,et al.Production of cellulase induced by Fusarium oxysporum and production of cellulosic ethanol by simultaneous saccharification fermentation[J].Jiangsu Agricultural Sciences,2019,47(11):277.

备注/Memo

备注/Memo:
收稿日期:2016-02-24
基金项目:国家自然科学基金(编号:31300088);江苏高校优势学科建设工程项目;江苏大学高级专业人才科研启动基金(编号:10JDG117)。
作者简介:乐易林(1978—),男,江西宜春人,博士,助理研究员,主要从事酶工程研究。E-mail:leyilin@163.com。
通信作者:邵蔚蓝,教授,主要从事酶工程研究。E-mail:weilanshao@foxmail.com。
更新日期/Last Update: 2016-11-25