|本期目录/Table of Contents|

[1]靳开川,何金环.油菜素内酯在植物抗逆中的作用及信号传导机制综述[J].江苏农业科学,2017,45(14):4-7.
 Jin Kaichuan,et al.Role of brassinolide in plant stress resistance and its signal transduction mechanism:a review[J].Jiangsu Agricultural Sciences,2017,45(14):4-7.
点击复制

油菜素内酯在植物抗逆中的作用及信号传导机制综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年14期
页码:
4-7
栏目:
专论与综述
出版日期:
2017-07-20

文章信息/Info

Title:
Role of brassinolide in plant stress resistance and its signal transduction mechanism:a review
作者:
靳开川1 何金环2
1.河南大学,河南开封 475004; 2.河南牧业经济学院,河南郑州 450008
Author(s):
Jin Kaichuanet al
关键词:
植物油菜素内酯抗逆信号转导机制调节作用
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
油菜素内酯(brassinosteroid,BR)在植物生长发育过程中起着非常重要的调节作用。近几年,研究人员结合遗传学、基因与蛋白质组学、细胞生物学等多学科方法和手段,使油菜素内酯的研究取得了显著进展。介绍油菜素内酯在植物的抗逆性(干旱、高盐、高温、低温、重金属)过程中的作用及信号转导机制等,以期为植物分子育种提供借鉴。
Abstract:
-

参考文献/References:

[1]Clouse S D,Langford M,McMorris T C. A brassinosteroid insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiol,1996,111(3):671-678.
[2]Upreti K K,Murti G S R. Effects of brassinosteroids on growth,nodulation,phytohormone content and nitrogenase activity in French bean under water stress[J]. Biol Plant,2004,48(3):407-411.
[3]Kagale S,Divi U K,Krochko J E,et al. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,225(2):353-364.
[4]Li Y H,Liu Y J,Xu X L,et al. Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana[J]. Biol Plant,2012,56:192-196.
[5]Zhang M C,Zhai Z X,Tian X L,et al. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.)[J]. Plant Growth Regul,2008,56(3):257-264.
[6]Fariduddin Q,Khanam S,Hasan S A,et al. Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L.[J]. Acta Physiol Plant,2009,31(5):889-897.
[7]Turkan I,Demiral T. Recent developments in understanding salinity tolerance[J]. Environ Exp Bot,2009,67(1):2-9.
[8]Lin Y C,Kao C H. Proline accumulation induced by excess nickel in detached rice leaves[J]. Biol Plant,2007,51(2):351-354.
[9]zdemir F,Bor M,Demiral T,et al. Effects of 24-epibrassinolide on seed germination,seedling growth,lipid peroxidation,proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress[J]. Plant Growth Regul,2004,42(3):203-211.
[10]Hayat S,Hasan S A,Yusuf M,et al. Effect of 28-homobrassinolide on photosynthesis,fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata[J]. Environ Exp Bot,2010,69(2):105-112.
[11]Ding H D,Zhu X H,Zhu Z W,et al. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide[J]. Biol Plant,2012,56(4):767-770.
[12]Ali Q,Athar H U R,Ashraf M. Modulation of growth,photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide[J]. Plant Growth Regulation,2008,56(2):107-116.
[13]Zhang J H,Huang W D,Liu Y P,et al. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses[J]. Journal of Integrative Plant Biology,2005,47(8):959-970.
[14]Singh I,Shono M. Physiological and molecular effects of 24-epibrassinolide,a brassinosteroid on thermotolerance of tomato[J]. Plant Growth Regulation,2005,47(2):111-119.
[15]Mazorra L M,Nunez M,Hechavarria M,et al. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures[J]. Biologia Plantarum,2002,45(4):593-596.
[16]Ogweno J O,Song X S,Shi K,et al. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum[J]. Journal of Plant Growth Regulation,2008,27(1):49-57.
[17]Kagale S,Divi U K,Krochko J E,et al. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,2252:353-364.
[18]Salveit M E. Chilling injury is reduced in cucumber and riceseedlings in tomato pericarp discs by heat-shocks appliedafter chilling[J]. Postharvest Biology and Technology,2001,21(2):169-177.
[19]Allen D J,Ort D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in Plant Science,2001,6(1):36-42.
[20]Huang L F,Zheng J H,Zhang Y Y,et al. Diurnal variations in gas exchange,chlorophyll fluorescence quenching and light allocation in soybean leaves:the cause for midday depression in CO2 assimilation[J]. Scientia Horticulturae,2006,110(2):214-218.
[21]Janeczko A,Gullner G,Skoczowski A,et al. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves[J]. Biologia Plantarum,2007,51(2):355-358.
[22]Bajguz A,Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry:PPB/Societe Francaise de Physiologie Vegetale,2009,47(1):1-8.
[23]Vassilev A,Yordanov I. Reductive analysis of factors limiting growth of cadmium-treated plants:a review[J]. Bulg J Plant Physiol,1997,23(3/4):114-133.
[24]Janeckzo A,Koscielniak J,Pilipowicz M,et al. Protection of winter rapephotosystem 2 by 24-epibrassinolide under Cadmium stress[J]. Photosynthetica,2005,43(2):293-298.
[25]Anuradha S,Rao S . The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under Cadmium stress[J]. Plant Soil and Environment,2007,53(11):465-472.
[26]Sharma P,Bhardwaj R. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress[J]. Acta Physiologiae Plantarum,2007,29(3):259-263.
[27]Alam M M,Hayat S,Ali B,et al. Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea[J]. Photosynthetica,2007,45(1):139-142.
[28]She J,Han Z F,Kim T W,et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature,2011,474:472-476.
[29]Wang X E,Chory J. Brassinosteroids regulate dissociation of BKI1,a negative regulator of BRI1 signaling,from the plasma membrane[J]. Science,2006,313(5790):1118-1122.
[30]Russinova E,Borst J W,Kwaaitaal M,et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1)[J]. Plant Cell,2004,16(12):3216-3229.
[31]Roux M,Schwessinger B,Albrecht C A,et al. The Arabidopsis Leucine-Rich repeat Receptor-Like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. Plant Cell,2011,23(6):2440-2455.
[32]Gou X P,Yin H J,He K,et al. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling[J]. PLoS Genetics,2012,8(1):71-76.
[33]Kim T W,Guan S H,Burlingame A L,et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2[J]. Molecular Cell,2011,43(4):561-571.
[34]Yan Z Y,Zhao J,Peng P,et al. BIN2 functions redundantly with other Arabidopsis GSK3-Like kinases to regulate brassinosteroid signaling[J]. Plant Physiology,2009,150(2):710-721.
[35]Tang W Q,Yuan M,Wang R J,et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1[J]. Nature Cell Biology,2011,13(2):U49-124.
[36]Ye H X,Li L,Yin Y H. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways[J]. Journal of Integrative Plant Biology,2011,53(6):455-468.
[37]Yu X,Li L,Zola J,et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant Journal,2011,65(4):634-646.
[38]Li L,Ye H X,Guo H Q,et al. Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3918-3923.
[39]Ye H X,Li L,Guo H Q,et al. MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(49):20142-20147.
[40]Bai M Y,Shang J X,Oh E,et al. Brassinosteroid,gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nature Cell Biology,2012,14(8):U78-810.
[41]Gallego-Bartolome J,Minguet E G,Grau-Enguix F,et al. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(33):13446-13451.
[42]Oh E,Zhu J Y,Wang Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nature Cell Biology,2012,14(8):U64-802.
[43]Symons G M,Reid J B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels[J]. Plant Physiology,2004,135(4):2196-2206.
[44]Zhao B L,Li J. Regulation of brassinosteroid biosynthesis and inactivation[J]. Journal of Integrative Plant Biology,2012,54(10,SI):746-759.
[45]Kim G T,Fujioka S,Kozuka T,et al. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana[J]. Plant Journal,2005,41(5):710-721.
[46]Mussig C,Fischer S,Altmann T. Brassinosteroid-regulated gene expression[J]. Plant Physiology,2002,129(3):1241-1251.
[47]Turk E M,Fujioka S,Seto H,et al. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms[J]. Plant Journal,2005,42(1):23-34.
[48]Kim H B,Kwon M,Ryu H,et al. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis[J]. Plant Physiology,2006,140(2):548-557.
[49]Wang M J,Liu X Y,Wang R,et al. Overexpression of a putative Arabidopsis BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid[J]. Journal of Experimental Botany,2012,63(16):5787-5801.
[50]Oh M H,Wang X F,Clouse S D,et al. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):327-332.
[51]Irani N G,Rubbo S D,Mylle E,et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane[J]. Nature Chemical Biology,2012,8(6):583-589.

相似文献/References:

[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(14):362.
[2]纪秀娥,史留功,胡春红,等.油菜素内酯对小麦、玉米种子萌发的影响[J].江苏农业科学,2014,42(09):88.
 Ji Xiue,et al.Effects of brassinolide on seed germination of wheat and maize[J].Jiangsu Agricultural Sciences,2014,42(14):88.
[3]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(14):349.
[4]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(14):292.
[5]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(14):348.
[6]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(14):19.
[7]李健忠,郝浩浩,薛立新,等.打顶后喷施油菜素内酯和吲哚乙酸对烤烟质体色素及其降解产物的影响[J].江苏农业科学,2016,44(02):113.
 Li Jianzhong,et al.Effects of spraying brassinolide and indoleacetic acid after topping on plastid pigment and its degradation products of tobacco[J].Jiangsu Agricultural Sciences,2016,44(14):113.
[8]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(14):42.
[9]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
 Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(14):13.
[10]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
 Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(14):326.

备注/Memo

备注/Memo:
收稿日期:2016-03-24
基金项目:河南省科技重大专项(编号:141100110800)。
作者简介:靳开川(1977—),男,硕士,讲师,研究方向为分子生物学。E-mail:epsalon@163.com。
通信作者:何金环,硕士,副教授,研究方向为生物化学。E-mail:zzmzhejinhuan@163.com。
更新日期/Last Update: 2017-07-20