|本期目录/Table of Contents|

[1]王春霞,王晶,曹子健,等.玉米根毛单细胞类型转录组分析[J].江苏农业科学,2022,50(3):49-58.
 Wang Chunxia,et al.Transcriptome analysis of single cell type of root hair in maize[J].Jiangsu Agricultural Sciences,2022,50(3):49-58.
点击复制

玉米根毛单细胞类型转录组分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第3期
页码:
49-58
栏目:
“转录组”专题
出版日期:
2022-02-05

文章信息/Info

Title:
Transcriptome analysis of single cell type of root hair in maize
作者:
王春霞12 王晶1 曹子健1 胡宝1 许子洁1 陈立群2
1.河北工程大学园林与生态工程学院,河北邯郸 056038;2.中国农业大学生物学院植物生理学与生物化学国家重点实验室,北京 100193
Author(s):
Wang Chunxiaet al
关键词:
玉米根毛单子叶植物转录组分析特异表达基因
Keywords:
-
分类号:
S513.01
DOI:
-
文献标志码:
A
摘要:
根毛是植物根表皮细胞向外突起伸长形成的管状单细胞,在植物水分、营养物质吸收及与外界环境相互作用的过程中发挥重要功能。目前,对玉米根毛生长发育的研究极其有限,玉米作为一种单子叶植物,根毛生长发育的分子机制与十字花科植物拟南芥可能有所不同。为探究玉米根毛生长发育的调控机制,以玉米自交系B73根毛为研究对象,收集生长3 d的根毛进行单细胞类型的转录组测序分析。结果表明,各组样品高质量碱基均达到6 Gb以上,各组样品的数据比对率均在85%以上。筛选到1 050个根毛特异表达基因,其中含有68个转录因子。GO富集分析发现,玉米根毛特异表达基因主要集中在细胞壁合成、离子结合、氧化还原反应及应答逆境胁迫过程。将玉米根毛特异表达基因进行同源比对,鉴定到23个同源基因。分析转录组数据还发现玉米根毛细胞中存在内含子保留这一特异可变剪切形式。qRT-PCR 验证结果表明,9个根毛特异表达基因的表达与转录组分析的结果相符合,证明了转录组数据的可靠性。研究结果解析了玉米根毛生长发育的转录调控分子机制,为后续研究提供了重要基因数据信息。
Abstract:
-

参考文献/References:

[1]Brena-medina V,Champneys A R,Grierson C,et al. Mathematical modeling of plant root hair initiation:dynamics of localized patches[J]. SIAM Journal on Applied Dynamical Systems,2014,13(1):210-248.
[2]Nestler J,Liu S Z,Wen T J,et al. Roothairless5,which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase[J]. The Plant Journal,2014,79(5):729-740.
[3]Stacey G,Libault M,Brechenmacher L,et al. Genetics and functional genomics of legume nodulation[J]. Current Opinion in Plant Biology,2006,9(2):110-121.
[4]Petersen L N,Ingle R A,Knight M R,et al. OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis[J]. Journal of Experimental Botany,2009,60(13):3727-3735.
[5]Hochholdinger F,Wen T J,Zimmermann R,et al. The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored,monocot-specific,COBRA-like protein that significantly affects grain yield[J]. The Plant Journal,2008,54(5):888-898.
[6]Li L,Hey S,Liu S Z,et al. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth[J]. Scientific Reports,2016,6:34395.
[7]Nestler J,Schütz W,Hochholdinger F.Conserved and unique features of the maize (Zea mays L.) root hair proteome[J]. Journal of Proteome Research,2011,10(5):2525-2537.
[8]Hey S,Baldauf J,Opitz N,et al. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome[J]. Journal of Experimental Botany,2017,68(9):2175-2185.
[9]Schiefelbein J,Kwak S H,Wieckowski Y,et al. The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis[J]. Journal of Experimental Botany,2009,60(5):1515-1521.
[10]Balcerowicz D,Schoenaers S,Vissenberg K.Cell fate determination and the switch from diffuse growth to planar polarity in Arabidopsis root epidermal cells[J]. Frontiers in Plant Science,2015,6:1163.
[11]Gu F W,Nielsen E.Targeting and regulation of cell wall synthesis during tip growth in plants[J]. Journal of Integrative Plant Biology,2013,55(9):835-846.
[12]Salazar-Henao J E,Vélez-Bermúdez I C,Schmidt W.The regulation and plasticity of root hair patterning and morphogenesis[J]. Development,2016,143(11):1848-1858.
[13]Schiefelbein J,Huang L,Zheng X H.Regulation of epidermal cell fate in Arabidopsis roots:the importance of multiple feedback loops[J]. Frontiers in Plant Science,2014,5:47.
[14]Lin Q,Ohashi Y,Kato M,et al. GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development[J]. The Plant Cell,2015,27(10):2894-2906.
[15]Zhu Y,Rong L A,Luo Q A,et al. The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development[J]. The Plant Cell,2017,29(2):260-276.
[16]Hemsley P A,Kemp A C,Grierson C S.The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis[J]. The Plant Cell,2005,17(9):2554-2563.
[17]Seifert G J,Barber C,Wells B,et al. Galactose biosynthesis in Arabidopsis:genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers[J]. Current Biology,2002,12(21):1840-1845.
[18]Kandasamy M K,McKinney E C,Meagher R B.A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development[J]. The Plant Cell,2009,21(3):701-718.
[19]Pei W K,Du F,Zhang Y,et al. Control of the actin cytoskeleton in root hair development[J]. Plant Science,2012,187:10-18.
[20]Kang E F,Zheng M Z,Zhang Y,et al. The microtubule-associated protein MAP18 affects ROP2 GTPase activity during root hair growth[J]. Plant Physiology,2017,174(1):202-222.
[21]Gupta D K,Pena L B,Romero-Puertas M C,et al. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity[J]. Plant,Cell & Environment,2017,40(4):509-526.
[22]Wen T J,Schnable P S.Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable[J]. American Journal of Botany,1994,81(7):833-842.
[23]Wang C X,Qi C Y,Luo J H,et al. Characterization of LRL5 as a key regulator of root hair growth in maize[J]. The Plant Journal,2019,98(1):71-82.
[24]Esseling J J,Lhuissier F G P,Emons A M C.A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes:implications for nodulation factor-induced signaling and formation of a multifaceted root hair pocket for bacteria[J]. The Plant Cell,2004,16(4):933-944.
[25]Bruex A,Kainkaryam R M,Wieckowski Y,et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis[J]. PLoS Genetics,2012,8(1):e1002446.
[26]Galway M E,Eng R C,Schiefelbein J W,et al. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants,and factors affecting the post-rupture resumption of mutant root hair growth[J]. Planta,2011,233(5):985-999.
[27]Yu Z M,Kang B,He X W,et al. Root hair-specific expansins modulate root hair elongation in rice[J]. The Plant Journal,2011,66(5):725-734.
[28]Moon S,Cho L H,Kim Y J,et al. RSL class II transcription factors guide the nuclear localization of RHL1 to regulate root hair development[J]. Plant Physiology,2018,179(2):558-568.
[29]Lockhart J.Never let a good crisis go to waste:the kinesin ARK1 promotes microtubule catastrophe during root hair development[J]. The Plant Cell,2014,26(8):3221.
[30]Breuninger H,Thamm A,Streubel S,et al. Diversification of a transcription factor family led to the evolution of antagonistically acting genetic regulators of root hair growth[J]. Current Biology,2016,26(12):1622-1628.
[31]Rishmawi L,Pesch M,Juengst C,et al. Non-cell-autonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis[J]. Plant Physiology,2014,165(1):186-195.
[32]Hedlund E,Deng Q L.Single-cell RNA sequencing:Technical advancements and biological applications[J]. Molecular Aspects of Medicine,2018,59:36-46.
[33]Molendijk A J,Bischoff F,Rajendrakumar C S,et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth[J]. The EMBO Journal,2001,20(11):2779-2788.
[34]Ishida T,Kurata T,Okada K,et al. A genetic regulatory network in the development of trichomes and root hairs[J]. Annual Review of Plant Biology,2008,59(1):365-386.
[35]Tam T H Y,Catarino B,Dolan L.Conserved regulatory mechanism controls the development of cells with rooting functions in land plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(29):3959-3968.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(3):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(3):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(3):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(3):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(3):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(3):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(3):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(3):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(3):77.

备注/Memo

备注/Memo:
收稿日期:2021-07-07
基金项目:河北省现代农业产业技术体系食用菌创新团队建设专项(编号:HBCT2018050202);河北省重点研发计划项目现代种业科技专项(编号:19222903D);河北省高等学校学科技术研究项目(编号:QN2021210)。
作者简介:王春霞(1989—),女,河北石家庄人,博士,主要从事玉米根毛生长发育机制研究。E-mail:wangchunxia@hebeu.edu.cn。
通信作者:陈立群,博士,副教授,主要从事植物发育生物学研究。E-mail:15933560026@163.com。
更新日期/Last Update: 2022-02-05