|本期目录/Table of Contents|

[1]段俊枝,李莹,周雷,等.耐冷功能基因及其在植物耐冷基因工程中的应用新进展[J].江苏农业科学,2015,43(06):1-6.
 Duan Junzhi,et al.New progress in cold tolerance functional genes and their application in plant cold tolerance genetic engineering[J].Jiangsu Agricultural Sciences,2015,43(06):1-6.
点击复制

耐冷功能基因及其在植物耐冷基因工程中的应用新进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年06期
页码:
1-6
栏目:
专论
出版日期:
2015-06-25

文章信息/Info

Title:
New progress in cold tolerance functional genes and their application in plant cold tolerance genetic engineering
作者:
段俊枝1 李莹2 周雷3 潘英华4 赵明忠5 任银玲1
1.河南省农业科学院农业经济与信息研究所,河南郑州 450002;2.河南农业大学,河南郑州 450002;3.湖北省农业科学院粮食作物研究所,湖北武汉 430064; 4.广西壮族自治区农业科学院水稻研究所,广西南宁 530005;5.河南省农业科学院小麦研究所,河南郑州 450002
Author(s):
Duan Junzhiet al
关键词:
植物耐冷功能基因基因工程新进展
Keywords:
-
分类号:
Q78
DOI:
-
文献标志码:
A
摘要:
低温是影响植物生长发育及作物产量最主要的环境胁迫因子之一。从合成渗透调节物质基因、抗冻蛋白基因、脂肪酸去饱和代谢关键酶基因、抗氧化酶类基因等全面系统地概述了耐冷功能基因及其在植物耐冷基因工程中的应用新进展,以期为植物耐冷遗传改良及育种奠定基础。
Abstract:
-

参考文献/References:

[1]Nanjo T,Kobayashi M,Yoshiba Y,et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana[J]. FEBS Letter,1999,461(3):205-221.
[2]Hur J,Jung K H,Lee C H,et al. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice[J]. Plant Science,2004,167(3):417-426.
[3]Gleeson D,Lelu-Walter M,Parkinson M. Overproduction of proline in transgenic hybrid larch (Larix×leptoeuropaea Dengler) cultures renders them tolerant to cold,salt and frost[J]. Molecular Breeding,2005,15(1):21-29.
[4]Niu X G,Xiong F J,Liu J,et al. Co-expression of ApGSMT and ApDMT promotes biosynthesis of glycine betaine in rice (Oryza sativa L.) and enhances salt and cold tolerance[J]. Environmental and Experimental Botany,2014,104:16-25.
[5]Hayashi H,Alia,Mustardy L,et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase;accumulation of glycinebetaine and enhanced tolerance to salt and cold stress[J]. Plant J,1997,12(1):133-142.
[6]Sakamoto A,Valverde R,Alia,et al. Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants[J]. Plant J,2000,22(5):449-453.
[7]Sakamoto A,Murata A N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold[J]. Plant Molecular Biology,1998,38(6):1011-1019.
[8]Zhang X Y,Liang C,Wang G P,et al. The protection of wheat plasma membrane under cold stress by glycine betaine overproduction[J]. Biologia Plantarum,2010,54(1):83-88.
[9]Garg A K,Kim J K,Owens T G,et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proceedings of the National Academy of Science of the United States of America,2002,99(25):15898-15903.
[10]Jang I C,Oh S J,Seo J S,et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress-tolerance without stunting growth[J]. Plant Physiol,2003,131(2):516-524.
[11]Li H W,Zang B S,Deng X W,et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta,2011,234(5):1007-1018.
[12]王关林,李铁松,方宏筠,等. 番茄转果聚糖合酶基因获得抗寒植株[J]. 中国农业科学,2004,37(8):1193-1197.
[13]Kawakami A,Sato Y,Yoshida M. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance[J]. J Exp Bot,2008,59(4):793-802.
[14]Song J,Liu J,Weng M L,et al. Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants[J]. Gene,2013,513(1):118-127.
[15]Worrall D,Elias L,Ashford D,et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J]. Science,1998,282(5386):115-117.
[16]Wallis J G,Wang H Y,Guerra D J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures[J]. Plant Molecular Biology,1997,35(3):323-330.
[17]黄永芬,汪清胤,付桂荣,等. 美洲拟鲽抗冻蛋白基因afp导入番茄的研究[J]. 生物化学杂志,1997,13(4):418-422.
[18]郭丽琼,林俊芳,熊盛,等. 抗冷冻蛋白基因遗传转化草菇的研究[J]. 微生物学报,2005,45(1):39-43.
[19]王艳,邱立明,谢文娟,等. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报,2008,34(3):397-402.
[20]Meyer K,Keil M,Naldrett M J. A leucine rich repeat protein of carrot that exhibits antifreeze activity[J]. FEBS Letters,1999,447(2/3):171-178.
[21]Fan Y,Liu B,Wang H,et al. Cloning of an tifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants[J]. Plant Cell Reports,2002,21(4):296-301.
[22]Zhang C,Fei S Z,Arora R,et al. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance[J]. Planta,2010,232(1):155-164.
[23]Deng L Q,Yu H Q,Liu Y P,et al.Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco[J]. Gene,2014,539(1):132-140.
[24]Warren G J,Thorlby G J,Knight M R. The molecular biological approach to understanding freezing-tolerance in the model plant,Arabidopsis thaliana[J]. Environmental Stressors and Gene Responses,2000,1:245-258.
[25]Lyons J M. Chilling injury in plants[J]. Annual Review Plant Physiology,1973,24(1):445-466.
[26]Murata N,Lshizaki-Nishizawa O,Higashi S,et al. Genetically engineered alteration in the chilling sensitivity of plants[J]. Nature,1992,356(23):710-713.
[27]Steponkus P L,Uemura M,Joseph R A,et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proceedings of the National Academy of Science of the United States of America,1998,95(24):14570-14575.
[28]Cyril J,Powell G L,Duncan R R,et al. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure[J]. Crop Science,2002,42(6):2031-2037.
[29]李美茹,刘鸿先,王以柔. 植物抗冷性分子生物学研究进展[J]. 热带亚热带植物学报,2000,8(1):70-80.
[30]Yokoi S,Higashi S I,Kishitani S,et al. Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice[J]. Molecular Breeding,1998,4(3):269-275.
[31]Ariizumi T,Kishitani S,Inatsugi R,et al. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings[J]. Plant Cell Physiology,2002,43(7):751-758.
[32]Kodama H,Hamada T,Horiguchi G,et al.Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco[J]. Plant Physiology,1994,105(2):601-605.
[33]Kodama H,Horiguchi G,Nishiuchi T,et al. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves[J]. Plant Physiol,1995,107(4):1177-1185.
[34]Khodakovskaya M,McAvoy R,Peters J,et al.Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene under the control of a cold-inducible promoter[J]. Planta,2006,223(5):1090-1100.
[35]Gibson S,Arondel V,Iba K,et al. Cloning of a temperature-regulated gene encoding a chloroplast ω-3 desaturase from Arabidopsis thaliana[J]. Plant Physiology,1994,106(4):1615-1621.
[36]刘锦学,王茂华,向俊蓓. 甘蓝型油菜BnFAD8基因编码序列的克隆和表达谱分析[J]. 四川大学学报:自然科学版,2011,48(3):697-702.
[37]Kwon J H,Lee Y M,An C S. cDNA cloning of chloroplast omega-3 fatty acid desaturase from Capsicum annuum and its expression upon wounding[J]. Mol Cells,2000,10(5):493-497.
[38]Wakita Y,Otani M,Hamada T,et al. A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato (Ipomoea batatas)[J]. Plant Cell Reports,2001,20(3):244-249.
[39]Yu C,Wang H S,Yang S,et al. Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato[J]. Plant Physiology and Biochemistry,2009,47(11/12):1102-1112.
[40]Reddy A S,Nuccio M L,Gross L M,et al. Isolation of a Δ6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp.strain PCC 7120[J]. Plant Molecular Biology,1993,22(2):293-300.
[41]Vigh L,Los D A,Horváth I,et al. The primary signal in the biological perception of temperature:Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803[J]. Proceedings of the National Academy of Science of the United States of America,1993,90(19):9090-9094.
[42]Los D A,Ray M K,Murata N. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803[J]. Mol Microbiol,1997,25(6):1167-1175.
[43]Orlova I V,Serebriiskaya T S,Popov V,et al.Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants[J]. Plant Cell Physiology,2003,44(4):447-450.
[44]Ma J Z,Liu D,Tang P S. Cloning of spinach SAD gene,its construction and transformation to tobacco[J]. Plant Physiol,1996,111(2):814-823.
[45]Vega S E,del Rio A H,Bamberg J B,et al. Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation[J]. American Journal of Potato Research,2004,81(2):125-135.
[46]McKersie B D,Chen Y,de Beus M,et al.Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Physiology,1993,103 (4):1155-1163.
[47]Duan M,Feng H L,Wang L Y,et al.Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato[J]. Journal of Plant Physiology,2012,169(9):867-877.
[48]Shin S Y,Kim I S,Kim Y S,et al. Ectopic expression of Brassica rapa L. MDHAR increased tolerance to freezing stress by enhancing antioxidant systems of host plants[J]. South African Journal of Botany,2013,88:388-400.
[49]Airaj H E,Gest N,Truffault V,et al.Decreased monodehydroascorbate reductase activity reduces tolerance to cold storage in tomato and affects fruit antioxidant levels[J]. Postharvest Biology and Technology,2013,86:502-510.
[50]Shu D F,Wang L Y,Duan M,et al. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress[J]. Plant Physiology and Biochemistry,2011,49(10):1228-1237.
[51]Hegedüs A,Erdei S,Janda T,et al.Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress[J]. Plant Science,2004,166(5):1329-1333.
[52]Kumar S,Asif M H,Chakrabarty D,et al.Expression of a rice lambda class of glutathione S-transferase,OsGSTL2,in Arabidopsis provides tolerance to heavy metal and other abiotic stresses[J]. Journal of Hazardous Materials,2013,248/249:228-237.
[53]Imai R,Chang L,Ohta A,et al. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae[J]. Gene,1996,170(2):243-248.
[54]Checker V G,Chhibbar A K,Khurana P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought,salinity and cold stress[J]. Transgenic Research,2012,21(5):939-957.
[55]Artus N N,Uemura M,Steponkus P L,et al. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance[J]. Proceedings of the National Academy of Science of the United States of America,1996,93(23):13404-13409.
[56]Chen L,Zhong H,Ren F.A novel cold-regulated gene,COR25,of Brassica napus is involved in plant response and tolerance to cold stress[J]. Plant Cell Rep,2011,30(4):463-471.
[57]Wu L,Zhou M Q,Shen C,et al.Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance[J]. Journal of Plant Physiology,2012,169(14):1408-1416.
[58]Yin Z M,TRorat T,Szabala B M,et al.Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings[J]. Plant Science,2006,170(6):1164-1172.
[59]Hoi J W S,Beau R,Latgé J P.A novel dehydrin-like protein from Aspergillus fumigatus regulates freezing tolerance[J]. Fungal Genetics and Biology,2012,49(3):210-216.
[60]Guo S J,Zhou H Y,Zhang X S,et al.Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSⅡ and PSⅠ during chillingstress under low irradiance[J]. Journal of Plant Physiology,2007,164(2):126-136.
[61]Li D D,Tai F J,Zhang Z T,et al. A cotton gene encodes a tonoplast aquaporin that is involved in cell tolerance to cold stress[J]. Gene,2009,438(1-2):26-32.
[62]Qiao J B,Mitsuhara I,Yazaki Y,et al. Enhanced resistance to salt,cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells-their possible contribution through improved function of organella[J]. Plant Cell Physiology,2002,43(9):992-1005.
[63]Thorlby G,Fourrier N,Warren G. The sensitive to freezing2 gene,required for freezing tolerance in Arabidopsis thaliana,encodes a beta-glucosidase[J]. Plant Cell,2004,16(8):2192-2203.
[64]Komori T,Imaseki H. Transgenic rice hybrids that carry the Rf-1 gene at multiple loci show improved fertility at low temperature[J]. Plant,Cell and Environment,2005,28(4):425-431.
[65]Xu Z Y,Zhang X,Schlppi M,et al.Cold-inducible expression of AZI1 and its function in improvement of freezing tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae[J]. Journal of Plant Physiology,2011,168(13):1576-1587.
[66]Zhang J,Li J Q,Wang X C,et al. OVP1,a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase),overexpression improved rice cold tolerance[J]. Plant Physiology and Biochemistry,2011,49(1):33-38.
[67]Zhou B,Deng Y S,Kong F Y,et al.Overexpression of a tomato carotenoid ε-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco[J]. Plant Physiology and Biochemistry,2013,70:235-245.

相似文献/References:

[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(06):362.
[2]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(06):349.
[3]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(06):292.
[4]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(06):348.
[5]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(06):19.
[6]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(06):42.
[7]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
 Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(06):13.
[8]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
 Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(06):326.
[9]李海波,王鹏飞,李英华.用于城市径流净化的岸堤漫流技术的植物与基质的组配方式[J].江苏农业科学,2015,43(07):357.
 Li Haibo,et al.Equipping way of plants and substrates of embankment flowing technology used for urban runoff purification[J].Jiangsu Agricultural Sciences,2015,43(06):357.
[10]闻婧,孟力力,张俊,等.弱光对植物光合特性影响的研究进展[J].江苏农业科学,2014,42(07):22.
 Wen Jing,et al.Research progress on photosynthetic characteristics of plant under weak light[J].Jiangsu Agricultural Sciences,2014,42(06):22.
[11]李君霞,樊永强,代书桃,等.bHLH转录因子在植物抗非生物胁迫基因工程中的应用进展[J].江苏农业科学,2022,50(12):1.
 Li Junxia,et al.Application progress of bHLH transcription factors in genetic engineering of plants against abiotic stress[J].Jiangsu Agricultural Sciences,2022,50(06):1.

备注/Memo

备注/Memo:
收稿日期:2014-07-08
基金项目:国家自然科学基金(编号:30871512、31000701);河南省农业科学院高层次人才科研启动经费(编号:豫财教[2013]232号2060503)。
作者简介:段俊枝(1981—),女,河北沧州人,博士,助理研究员,主要从事作物遗传育种及科技期刊编辑工作。E-mail:junzhi2004@163.com。
通信作者:任银玲,女,硕士,副研究员,主要从事农业信息及科技期刊编辑工作。E-mail:renyinling@hnagri.org.cn。
更新日期/Last Update: 2015-06-25