|本期目录/Table of Contents|

[1]王红,毋若楠,王争艳,等.NaCl胁迫下zma-miR059的表达及其抗盐性分析[J].江苏农业科学,2018,46(16):31-34.
 Wang Hong,et al.Analysis of expression and salt resistance of zma-miR059 under NaCl treatment[J].Jiangsu Agricultural Sciences,2018,46(16):31-34.
点击复制

NaCl胁迫下zma-miR059的表达及其抗盐性分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第16期
页码:
31-34
栏目:
生物技术
出版日期:
2018-08-30

文章信息/Info

Title:
Analysis of expression and salt resistance of zma-miR059 under NaCl treatment
作者:
王红 毋若楠 王争艳 杨成成 武永军
西北农林科技大学生命科学学院,陕西杨陵 712100
Author(s):
Wang Honget al
关键词:
NaCl胁迫玉米zma-miR059STTM
Keywords:
-
分类号:
S513.01
DOI:
-
文献标志码:
A
摘要:
以先玉335玉米为材料,研究笔者在前期试验中获得的zma-miR059在NaCl处理后的表达水平,测定处理植株叶片和根系中丙二醛(malonaldehyde,简称MDA)含量及超氧化物歧化酶(superoxide dismutase,简称SOD)、过氧化物酶(peroxidase,简称POD)、过氧化氢酶(catalase,简称CAT)活性变化。结果显示:zma-miR059表达量在分根NaCl胁迫和全根NaCl胁迫后均有上升;胁迫后SOD、POD的活性及MDA含量与zma-miR059的表达水平变化趋势一致,表明zma-miR059与盐胁迫相关。为了进一步研究zma-miR059的抗盐作用机制,构建了STTM表达载体,以期通过转基因试验进一步揭示其功能。
Abstract:
-

参考文献/References:

[1]Parida A K,Das A B. Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environmental Safety,2005,60(30):324-349.
[2]Bartel D P. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.
[3]Jone-Rhoades M W. Conservation and divergence in plant microRNAs[J]. Plant Molecular Biology,2012,80(1):3-16.
[4]Liu H H,Tian X Y,Wu C,et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA,2008,14(5):836-843.
[5]Ding D,Zhong L F,Wang H,et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Botany,2009,103(1):29-38.
[6]向娟,林鹏,李兴盛,等. 过表达番茄Sly-miR397基因增强拟南芥的抗旱性[J]. 中国农业大学学报,2016,21(10):51-58.
[7]Gu Z H,Huang C J,Li F F,et al. A versatile system for functional analysis of genes and microRNAs in cotton[J]. Plant Biotechnology Journal,2014,12(5):638-649.
[8]Hasegawa P M,Bressan R A,Zhu J K. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
[9]Hichem H,Mounir D,Naceur E A. Differential responses of two maize (Zea mays L.) varieties to salt stress:changes on polyphenols composition of foliage and oxidative damages[J]. Industrial Crops and Products,2009,30(1):144-151.
[10]Bustos D,Lascano R,Villasuso A L,et al. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O-2 · levels[J]. Annals of Botany,2008,102(4):551-559.
[11]Neto A D D A,Prisco J T,Enéas-Filho J,et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes[J]. Environmental and Experimental Botany,2006,56(1):87-94.
[12]田敏,饶龙兵,李纪元. 植物细胞中的活性氧及其生理作用[J]. 植物生理学通讯,2005,41(2):235-241.
[13]Chen C F,Ridzon D A,Broomer A J,et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Research,2005,33(20):e179.
[14]高俊凤. 植物生理学试验指导[M]. 北京:高等教育出版社,2006:210-219.
[15]Yan J,Gu Y,Jia X Y,et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. Plant Cell,2012,24(2):415-427.
[16]郑世英,商学芳,王景平. 可见分光光度法测定盐胁迫下玉米幼苗抗氧化酶活性及丙二醛含量[J]. 生物技术通报,2010(7):106-109.
[17]Jones-Rhoades M W,Bartel D P. Computational identification of plant MicroRNAs and their targets,including a stress-induced miRNA[J]. Molecular Cell,2004,14(6):787-799.
[18]付光明,苏乔,吴畏,等. 转BADH基因玉米的获得及其耐盐性[J]. 辽宁师范大学学报(自然科学版),2006,29(3):344-347.
[19]陈博阳,余彬彬,钱晓晴,等. 锌和土霉素胁迫对玉米种子发芽和幼苗抗氧化酶活性的影响[J]. 江苏农业学报,2017,33(1):13-18.
[20]王红,杨镇,裴文琪,等. 功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J]. 江苏农业学报,2016,32(5):974-979.
[21]张曼,胡雪丹,徐锦华,等. 葫芦砧木种质资源耐冷性评价[J]. 江苏农业学报,2016,32(6):1390-1395.
[22]周军,武金翠,杜宝明,等. 4种藤本植物的抗旱性比较[J]. 江苏农业学报,2016,32(3):674-679.
[23]Franco-Zorrilla J M,Valli A,Todesco M,et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics,2007,39(8):1033-1037.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]邹英宁,彭军荣.NaCl胁迫对金柑组培苗生长、根系形态和抗氧化的影响[J].江苏农业科学,2013,41(04):154.
[3]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(16):56.
[4]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(16):64.
[5]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(16):116.
[6]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(16):334.
[7]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(16):150.
[8]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(16):116.
[9]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(16):119.
[10]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(16):26.

备注/Memo

备注/Memo:
收稿日期:2017-03-20
基金项目:神华集团科技创新项目(编号:01300/K403021408)。
作者简介:王红(1989—),女,河北石家庄人,硕士研究生,研究方向为植物逆境分子生物学。E-mail:437511974@qq.com。
通信作者:武永军,博士,副教授,研究方向为植物逆境分子生物学。E-mail:wuyongjun@nwafu.edu.cn。
更新日期/Last Update: 2018-08-20